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Abstract

We consider the application of theWaveHoltz iteration to time-harmonic elastic wave equations with energy

conserving boundary conditions. The original WaveHoltz iteration for acoustic Helmholtz problems is a

fixed-point iteration that filters the solution of the wave equation with time-harmonic forcing and boundary

data. As in the original WaveHoltz method, we reformulate the fixed point iteration as a positive definite

linear system of equations that is iteratively solved by a Krylov method. We present two time-stepping

schemes, one explicit and one (novel) implicit, which completely remove time discretization error from
the WaveHoltz solution by performing a simple modification of the initial data and time-stepping scheme.

Numerical experiments indicate an iteration scaling similar to that of the original WaveHoltz method, and

that the convergence rate is dictated by the shortest (shear) wave speed of the problem. We additionally

show that the implicit scheme can be advantageous in practice for meshes with disparate element sizes.

Keywords: Elastic wave equation, Helmholtz equation, Time-harmonic scattering

1. Introduction

Time-harmonic wave propagation problems are notoriously difficult to solve by direct or iterative meth-

ods due to the resolution requirements and the indefinite nature of the differential operator, especially at

high frequencies. For applications such as in solid mechanics, seismology and geophysics, we consider the

time-harmonic elastic wave equation (or Navier equation

1

)

ρω2v+∇ · T (v) = f(x), x ∈ Ω,

for a domain Ω and frequency ω. Here ρ is the density, v ∈ Rd is the displacement vector, d the spatial
dimension, T is the stress tensor, and f is the forcing. Few effective solvers and preconditioners are
available for the Navier equation, which are generally extensions of methods originally designed for the

acoustic time-harmonic wave equation more commonly known as the Helmholtz equation. The efficient

solution of the Helmholtz equation via iterative methods is an active area of research with a variety of

methods in both the frequency and time-domain. We refer to our previous paper [3] for a more in-depth

overview of the literature on techniques for solving the Helmholtz equation, as well as the review articles

[21, 22, 20].

The elastic wave equation models both pressure and shear waves and, as is the case for the Helmholtz

equation, the system of equations results in a discretization that is highly indefinite for large frequencies.
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As for any wave propagation problem the resolution must increase with the frequency, and here the most

stringent resolution constraint comes from the (shorter) shear wave wavelength. This, in tandem with

d times the number of unknowns leading to larger storage requirements, necessitates parallel, memory
lean, and scalable solvers that must be high order accurate to mitigate dispersive errors, [28], causing the

so-called pollution effect [7].
While most methods have traditionally focused on solving the Helmholtz equation in the frequency

domain (we provide a review of some of these below), an alternative approach is to instead construct

iterative solvers in the time-domain. One such method, the so-called Controllability Method (CM), was

first proposed by Bristeau et al. [12] and has recently received renewed interest in a series of papers by

Grote et al.[25, 31, 15]. The CM was extended to elastic media in [32, 27]. The unknown in the CM is the

initial data to the wave equation. In the CM this initial data is adjusted so that it produces an approximation

to the Helmholtz equation by solving a constrained least-squares minimization where the objective function

measures the deviation from time-periodicity. The minimization can be efficiently implemented using the

conjugate gradient method, where the gradient is computed by solving the adjoint wave equation backwards

in time.

It is possible, however, to find a time-harmonic wave equation solution by solving a single wave equation

forward in time in each iteration. This can be done via the WaveHoltz method introduced in [3] for the

scalar wave equation. We now provide an overview of the WaveHoltz method which was directly inspired

by recent work on the CM, [25].

1.1. Overview of the El WaveHoltz Iteration
As in the CM, the WaveHoltz iteration (and the Elastic version we denote El WaveHoltz) iteratively

updates the initial data to the wave equation. The marked difference between the two methods is that

the WaveHoltz iteration updates the initial data by filtering the wave equation solution over one period

(or an integer number of periods). The filtered solution is then used as the next initial data and thus the

WaveHoltz method only requires one wave solve per iteration while the CM requires two.

In [3] we show that the (linear) iteration is convergent in both the continuous and discretized setting

and that, if formulated as a linear system of equations, the underlying matrix is positive definite. We also

showed that with energy conserving boundary conditions (Dirichlet or Neumann) the matrix is symmetric as

long as the numerical method is symmetric (or symmetrizable).

We emphasize that the filter used in the WaveHoltz method corresponds to a bounded linear operator

with an inverse that is also bounded. Therefore, the number of iterations (and the condition number of the

problem) is essentially independent of the gridsize h for well resolved grids. This is in contrast to methods
that discretize and solve the PDE directly. Such methods typically have a condition number that scales as

h−2
which makes it increasingly difficult to solve the problem as the solution becomes more accurate.

The analysis in [3] predicted that the WaveHoltz method in d dimensions and accelerated by the con-
jugate gradient method converges to a fixed tolerance in O(ωd) iterations for energy conserving problems
and numerical experiments indicated that it converges in O(ω) iterations for open problems. The analytical
predictions from [3] are expected to hold here as well and in the experiments we carry out below we

observe O(ωd). All these results and observations are independent of grid resolution indicating that our
method can be particularly suitable when accurate solutions are required.

In this paper we focus solely on energy conserving boundary conditions (Dirichlet or normal stress)

and leave the cases of impedance and non-reflecting boundary conditions to future work. In addition to

introducing El WaveHoltz, we present several new results that are also retroactively applicable to our

earlier work on WaveHoltz for the scalar wave equation [3] and Maxwell’s equations [33].

Following the ideas of Stolk [36] we introduce two new two-level time-stepping schemes – one explicit

and one implicit – that remove the time-stepping error from the WaveHoltz solution. When either of these

time-stepping methods are used the solution to the discrete WaveHoltz method is identical to the solution

obtained by directly discretizing the frequency domain equation.

For high frequency, large scale problems, parallel solution of the Navier equation is the only feasible

option. For a parallel solver to scale well the ratio of communication to computation should be small.

In general, there are two types of communication: a) the local communications between processors to

exchange local degrees of freedom needed for stencil operations in the discretization of spatial derivatives,
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and b) global all-to-all operations such as computing the inner product between two global vectors. The

WaveHoltz method has an intrinsic advantage compared to methods that work directly with the frequency

domain equation in that the all-to-all communication that is required to update search directions in CG,

GMRES etc. only needs to be computed once per T = 2π/ω-period. Here we explore the effect of filtering
over an additional number of periods to further reduce the number of all-to-all communications.

We believe that the method we propose here is an attractive alternative to previously proposed meth-

ods. In particular, El WaveHoltz is easily implemented if an elastic wave equation solver is already avail-

able. As we show in the numerical experiments section, El WaveHoltz can be one to two orders of mag-

nitude faster compared to an algebraic multigrid (AMG) preconditioned GMRES solver for the frequency

domain equation when using the symmetric interior penalty discontinuous Galerkin implementation available

in MFEM [2]. There are, of course, many other solvers available; the question of which method will be most

efficient will depend on the details of the problem to be solved. We now review some of the methods

available in the literature.

1.2. Literature Review
One of the most common preconditioners for acoustic problems is the shifted Laplacian preconditioner

(SLP), a more thorough review of which can be found in the review article by Erlangga [20]. One of the first

extensions of the SLP to elastic media was introduced by Airaksinen et al. [1], in which a finite element

spatial discretization for the preconditioned system is inverted by AMG. A more traditional finite difference

multigrid SLP with line-relaxations was considered by Rizzuti and Mulder [34]. For both of these previous

approaches, the effectiveness of a straightforward SLP is degraded for nearly incompressible media as the

prolongation operators struggle to approximate the nullspace of the grad-div operator. To address this,

a more recent extension was done by Treister [37] in which a mixed-formulation of the Navier equation is

considered. While nearly incompressible media could be handled by the methods of [37], this comes at the

cost of doubling the number of unknowns as well as additional storage requirements for precomputing the

inverse of relaxation operators.

Another important class of methods for the solution of the Helmholtz equation are domain decom-

position (DD) methods, for which we refer the reader to [22] for a review. In the short article [13], it

was shown that a classic Schwarz DD with overlap for elastic problems converges for high frequencies,

diverges for medium frequencies, and stagnates for small frequencies. Moreover, overlapping DD as a pre-

conditioner for a GMRES accelerated solver exhibits convergence behavior that depends strongly on the

frequency ω with degrading performance for increasing frequency. To remedy this, Brunet et al. introduced
more general transmission conditions at the boundaries of overlapping domains in [14]. These transmission

conditions, together with a sufficiently large enough overlap, yield convergence of the DD method for all

frequencies with the exception of {ω/Cs, ω/Cp}, where Cs and Cp are the shear and pressure wave speeds,

respectively.

For unbounded problems one of the most promising classes of preconditioners for the Helmholtz equa-

tion are the so-called sweeping preconditioners by Engquist and Ying [18, 19]. These preconditioners con-

struct an LDLT decomposition by sweeping through the domain layer-by-layer, with the key observation
that the application of the Schur complement matrices found in the block diagonal matrix D is equivalent
to solving a quasi-1D(2D) problem in 2D(3D). In contrast to the acoustic case, however, the sweeping

preconditioner for time-harmonic elastic waves, [38], exhibited an increase in the number of iterations with

frequency for a heterogeneous media as the moving perfectly matched layer (PML) does not approximate

Green’s function as well. We note that the stable construction of PML for many elastic problems is still

considered an open question [10, 5]. Similar to the sweeping preconditioner, Belonosov et al. [11] con-

struct a preconditioner in 3D with damping that sweeps through the domain along a coordinate axis while

additionally homogenizing the medium in each layer. The preconditioner of [11] is inverted using FFT’s

and is accelerated with BiCGSTAB in the outer loop. As with the sweeping preconditioner, the choice of

sweeping direction is important. Thus for problems where heterogeneity is present in all directions this pre-

conditioner is less effective. Yet another solver with a sweeping nature is an extension of the Gordon and

Gordon [24] CARP-CG method for Helmholtz problems to elastic media [30]. Despite its simplicity this

method requires a large number of iterations, especially for heterogeneous media or problems with higher

Poisson ratios. It should be emphasized that, although successful for unbounded problems, the efficiency
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of sweeping methods for energy conserving boundary conditions has largely not been demonstrated and

their parallel implementation remains cumbersome.

Instead of the LDLT decomposition used by the sweeping preconditioner, other approaches construct-
ing LU/ILU factorizations and preconditioners are available. In [17] an ILU preconditioner based on wavelet

transforms with Gibbs reordering is used in a GMRES accelerated solver (with restarts) for time-harmonic

elastic waves. Wang et al. introduced a structured multifrontal algorithm using nested dissection based

domain decomposition, together with hierarchical semi-separable (HSS) compression for frontal matrices

with low off-diagonal ranks in [39]. The use of multilevel sequentially semi-separable (MSSS) matrix struc-

ture of the discretized elastic wave equation on Cartesian grids was leveraged in [9] inside of an induced

dimension reduction (IDR) accelerated ILU preconditioner. The drawback of LU/ILU methods for the Navier

equation is the growth in memory and storage requirements.

The rest of this paper is organized as follows. In Section 2 we present the Navier and elastic wave

equations. In Section 3 we introduce the WaveHoltz iteration applied to elastic problems with Dirichlet

and/or free surface boundary conditions. In Section 4 we outline the numerical methods used to solve

the elastic wave equation and present new results on time-stepping and Krylov acceleration. Numerical

examples are presented in Section 5. Finally, we summarize and conclude in Section 6.

2. Governing Equations

2.1. The Elastic Wave Equation
The linear elastic wave equation in an isentropic material described by the density ρ(x, t), the Lamé

parameters µ(x) > 0 and λ(x) > 0, and with a time-harmonic forcing takes the form

ρutt = ∇ · T (u)− Re{f(x)eiωt}, x ∈ Ω, 0 ≤ t ≤ T. (1)

Here u = (u(x, t), v(x, t), w(x, t)) is the displacement vector, x = (x, y, z)T is the Cartesian coordinate and t
is time. The stress tensor T (u) can be decomposed into

T (u) = λ(∇ · u)I + 2µD(u), (2)

where D(u) is the symmetric part of the displacement gradient

D(u) =
1

2

 2ux uy + vx uz + wx
uy + vx 2vy vz + wy
uz + wx vz + wy 2wz

 . (3)

We assume that equation (1) is closed by time-harmonic boundary conditions specifying the displacement

u(x, t) = Re{g(x)eiωt}, x ∈ ∂ΩD, (4)

or the normal stress

T (u)n = Re{h(x)eiωt}, x ∈ ∂ΩS, (5)

along with initial conditions

u(x, 0) = u0(x),
∂u(x, 0)

∂t
= u1(x). (6)

Multiplying (1) by uT , integrating over Ω and invoking the divergence theorem yields the energy estimate

1

2

d

dt

(
‖
√

(ρ)ut‖2 +

∫
Ω

λ(∇ · u)I + 2µ(D : D)dx
)

= −
∫

Ω

cos(ωt)uT f(x)dx+

∫
∂Ω

uTt T (u)n dS. (7)

Here n is the outward unit normal and the notation (A : B) =
∑d
i=1

∑d
j=1 ai,jbi,j is the standard tensor

contraction over two indices.

Thus, when there is no forcing, f(x) = 0, the energy is conserved in time as long as uTt T (u)n = 0 on
the boundary ∂Ω. The condition T (u)n = 0 indicates that the boundary is stress free or free of traction.
The Dirichlet condition on the velocity ut = 0 also holds if the displacement vanishes for all time on the
boundary, i.e. u = 0.

Remark 1. In the rest of this paper, unless otherwise noted, we will assume that the equations have been
non-dimensionalized and that ρ = 1.
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2.2. The Time-Harmonic Elastic Wave Equation
Note that if the initial data of the elastic wave equation (1) gives rise to a solution of the form u(x, t) =

Re{v(x)eiωt} then v satisfies the frequency domain equation

ω2v+∇ · T (v) = f(x), x ∈ Ω, (8)

with boundary conditions on either the displacement or normal stress

v(x) = g(x), x ∈ ∂ΩD, T (v)n = h(x), x ∈ ∂ΩS, (9)

where T is the stress tensor (and defined in the previous section).
For notational convenience we will refer to this as the elastic Helmholtz or, when there is no ambiguity,

simply the Helmholtz equation though it is often called the Navier or Navier-Cauchy equation. We note that,

in general, the Helmholtz solution v is complex-valued. However, for boundary conditions that conserve the
energy (such as Dirichlet and conditions on the normal stress) the corresponding solution v becomes real-
valued. For real-valued solutions, the corresponding time-harmonic solution of the elastic wave equation

(1) then simplifies to u(x, t) = v(x) cos(ωt). The El-WaveHoltz method can be used to find the solution v
in both cases, but as we exclusively consider the energy conserving case here we describe the method for

that case.

3. The El-WaveHoltz Iteration

The El-WaveHoltz iteration is a direct generalization of theWaveHoltz iteration introduced and analyzed

in [3]. In each iteration the elastic wave equation (1) is solved over one period t ∈ [0, T ], where T = 2π/ω.
Precisely, if we consider the energy conserving case, applying the WaveHoltz operator component wise to

the initial displacement vector u0 defines the El-WaveHoltz operator

Πu0 =
2

T

T∫
0

(
cos(ωt)− 1

4

)
u(x, t) dt. (10)

Here u(x, t) is the solution to (1) with the initial data u(x, 0) = u0 and
∂u(x,0)
∂t = 0. (For the energy conserving

case one always uses u1 = 0). To briefly motivate (10), we mention two consequences of the particular
form of the above operator. First, the filter (10) is designed such that solutions of the elastic wave

equation of the form u(x, t) = v(x) cos(ωt) yield v(x) as a fixed point. Second, it can be shown (see [3])
that the constant shift of −1/4 guarantees that the operator (10) has a unique fixed point. The fixed point
iteration then proceeds as

u(i+1) = Πu(i), u(0) = 0,

where we use u(i)
to denote the ith WaveHoltz iterate.

As the analysis of this operator is the same as that for the scalar operator analyzed in [3], we will

not repeat the analysis in detail here. Instead, we now highlight its most important properties. The

first thing to note is that the elastic Helmholtz solution v(x) is a fixed point of the operator. Indeed, if
u(x, t) = v(x) cos(ωt) (and thus u0(x) = v(x)), then the integral in (10) can trivially be evaluated

Πv(x) =
2

T

T∫
0

(
cos(ωt)− 1

4

)
cos(ωt)v(x) dt = v(x), (11)

Further, we denote by S the operator Π for the case when f = 0. If (λ2
j ,φj) is the eigendecomposi-

tion satisfying λ2
jφj = ∇ · T (φj), then for a general initial displacement the solution will be of the form∑∞

j=0 dj cos(λjt)φj . Defining

β(λ) ≡ 2

T

T∫
0

(
cos(ωt)− 1

4

)
cos(λt)dt,
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we obtain as in [3] that S can be expressed as

S
∞∑
j=0

djφj ≡
∞∑
j=0

β(λj)djφj .

If ω 6= λj for all j then the spectral radius of S is given by maxj |β(λj)| < 1 (see Lemma 2.1 in [3]) so
the iteration will converge. Since the operator Π is affine, we may find the fixed point (or equivalently the
elastic Helmholtz solution) by solving the equation (I − S)v ≡ Av = b ≡ Π0. As is the case for the scalar
Helmholtz equation, the eigenvalues of A lie in (0, 3/2) and the condition number scales with the frequency
as cond(A) ∼ ω2d

in d dimensions.
We emphasize that here A is a self-adjoint, positive definite and bounded operator. Thus once A is

discretized it will be possible to apply the conjugate gradient method. We can compute the action of A
from the action of S which is obtained by solving the elastic wave equation. We do not need to explicitly
form A. Moreover, as the condition number does not depend on the discretization size, the number of
iterations are not expected to increase as the solution becomes more accurate due to grid refinement.

We also note that since cond(A) ∼ ω2d
the conjugate gradient method is expected to converge to a fixed

tolerance in ωd iterations.
Finally, as mentioned above it is possible to define the iteration as the integral over multiple periods in

order to reduce the number of all-to-all communication in the Krylov iteration. For example, if the number

of periods is K then we can define the filtering as

ΠKu0 =
2

KT

KT∫
0

(
cos(ωt)− 1

4

)
u dt, T =

2π

ω
. (12)

Remark 2. For general boundary conditions (e.g. non-reflecting or impedance), the iteration converges
much faster, typically in ∼ ω iterations independent of dimension. For this case ∂u(x,0)

∂t = u1(x) will not be
zero and we must seek the initial data u0 and u1 simultaneously. The El-WaveHoltz operator then is

Π

[
u0

u1

]
=

2

T

T∫
0

(
cos(ωt)− 1

4

)[
u
ut

]
dt, T =

2π

ω
.

This operator is more difficult to analyze; see [23].

4. Numerical Methods and Discretization

An attractive feature of El-WaveHoltz is that it can be used together with any convergent discretization

of the elastic wave equation. Here we consider the conservative curvilinear finite difference method from [6]

and the symmetric interior penalty discontinuous Galerkin method [16, 26]. We give a very brief description

of these methods below and refer the reader to [6, 16] for details.

Although highly non-intrusive, the one additional discretizational detail required by El-WaveHoltz is

how to discretize the integral in (10). As the integrand is periodic (once converged) we always use the

trapezoidal rule.

4.1. El-WaveHoltz by Finite Differences
To discretize the elastic wave equation (1) in a general non-Cartesian geometry we write (1) in a curvi-

linear coordinate system that conforms with the boundaries of the domain but that can be mapped back to

the unit square (cube). Thus, we assume that there is a one-to-one mapping

x = x(q, r), y = y(q, r), (q, r) ∈ [0, 1]2,
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from the unit square to the domain of interest. Then the two dimensional version of (1) becomes

Jρ
∂2u

∂t2
=

∂

∂q

[
Jqx

[
(2µ+ λ) (qx∂q + rx∂r)u+λ (qy∂q + ry∂r) v

]
+Jqy

[
µ ((qx∂q + rx∂r) v + (qy∂q + ry∂r)u)

]]
+

∂

∂r

[
Jrx

[
(2µ+ λ) (qx∂q + rx∂r)u+ λ (qy∂q + ry∂r) v

]
+ Jry

[
µ ((qx∂q + rx∂r) v + (qy∂q + ry∂r)u)

]]
,

Jρ
∂2v

∂t2
=

∂

∂q

[
Jqx

[
µ ((qx∂q + rx∂r) v + (qy∂q + ry∂r)u)

]
+Jqy

[
(2µ+ λ) (qy∂q + ry∂r) v+λ (qx∂q + rx∂r)u

]]
+

∂

∂r

[
Jrx

[
µ ((qx∂q + rx∂r) v + (qy∂q + ry∂r)u)

]
+ Jry

[
(2µ+ λ) (qy∂q + ry∂r) v + λ (qx∂q + rx∂r)u

]]
.

Here J = xqyr − xryq is the Jacobian of the mapping. Also note that we have considered the case without
forcing for brevity.

We discretize the unit square (q, r) ∈ [0, 1]2 by a uniform grid on which we introduce real valued grid
functions [ui,j(t), vi,j(t)] = [u(qi, rj , t), v(qi, rj , t)]. On this grid we apply an energy stable discretization

ρJ
∂2uh
∂t2

= L(u)(uh, vh), ρJ
∂2vh
∂t2

= L(v)(uh, vh). (13)

Here ρJ is a diagonal matrix containing the metric information and uh, vh are vectors containing all the grid
function values. The (lengthy) exact definitions of L(u)(uh, vh), L(v)(uh, vh) can be found in [6].
To discretize the equations in time we either use the standard second order accurate centered differ-

ences, or one of the time-corrected schemes discussed below. For the standard second order accurate

centered difference approximation in time, the fully discrete equations take the form

(ρJ)(un+1
h − 2unh + un−1

h ) = ∆t2L(u)(unh, v
n
h),

(ρJ)(vn+1
h − 2vnh + vn−1

h ) = ∆t2L(v)(unh, v
n
h).

(14)

Then, if (u, v)ρJ is the weighted inner product defined by (f, (ρJ)−1 g)ρJ = (f, g)h, and Ce(t
n+1) is the

discrete energy

Ce(t
n+1) = ‖Dt

+u
n‖2ρJ + ‖Dt

+v
n‖2ρJ − (un+1, (ρJ)−1L(u)(un, vn))ρJ − (vn+1, (ρJ)−1L(v)(un, vn))ρJ , (15)

one can show that this discrete energy is conserved [6].

Note that (14) is slightly non-symmetric and needs to be diagonally scaled to become symmetric. Here

we scale by 2 along sides with free surface boundary conditions, and by 4 in corners where free surfaces

meet. Incorporating this scaling through the multiplication by a scaling matrix Λ, the method can be formally
written as

M(un+1
h − 2unh + un−1

h ) = ∆t2Lhunh. (16)

Here M = diag(ΛρJ,ΛρJ) and Lh = diag(ΛL(u),ΛL(v)) are symmetric and M is diagonal. However, as

M−1Lh is not in general symmetric, the iteration (10) will produce a symmetrizable but not symmetric
operator. We will show below that this requires a minor modification of the conjugate gradient algorithm

when used together with the iteration (10).

4.2. El-WaveHoltz by Symmetric Interior Penalty Discontinuous Galerkin Method
As an alternative to the finite difference method outlined above, we will also consider the Symmetric

Interior Penalty Discontinuous Galerkin (SIPDG) method [16, 26]. Let Ωh be a finite element partition of
the computational domain Ω, with Γh the set of all faces. Then (1) can be reformulated into the interior-
penalty weak formulation: Find uh ∈ (0, T )× Vh such that∑

E∈Ωh

(
ρ
d2uh
dt2

, v
)
E

+
∑
E∈Ωh

BE(uh, v) +
∑
γ∈Γh

Jγ(uh, v;S,R) = − cos(ωt)
∑
E∈Ωh

(f, v)E , (17)
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for all v ∈ Vh. Here

(u, v)E =

∫
E

u · v dE,

BE(u, v) =

∫
E

[
λ(∇ · u)(∇ · v) + µ(∇u+∇uT ) : ∇v

]
dE,

Jγ(u, v;S,R) = −
∫
γ

{T (u)n} · [v] dγ + S

∫
γ

{T (v)n} · [u] dγ +R

∫
γ

{λ+ 2µ}[u] · [v] dγ,

where {·} and [·] denote the average and jump of a function, respectively. The parameter R is the penalty
and S determines the particular flavor of IPDG.We set S = −1, corresponding to the Symmetric IPDG [26].
In this case, Jγ is symmetric with respect to uh and v so that together with the symmetry of BE we have
that the stiffness matrix is symmetric. Thus SIPDG provides a symmetric discretization of the elastic wave

equation, which will allow the use of conjugate gradient to accelerate convergence of the El-WaveHoltz

iteration.

Our solver is implemented in MFEM

2

[2] and is essentially a direct extension of example 17 to the

time-domain. Depending on the mesh, our choice of finite element space Vh is typically one of two broken
spaces. We choose either Pp(E), the space of polynomials of total degree at most p on triangles, orQp(E),
the space of polynomials of at most degree p on quadrilaterals. Unless otherwise noted, for the penalty
parameter we make the choice R = (p+ 1)(p+ 2) motivated by the analysis of [35].
With the standard second order explicit time discretization, the matrix form of (17) becomes

Mρ(un+1
h − 2unh + un−1

h ) = ∆t2 [Lhunh − fh cos(ωtn)] .

As for the finite difference method, M−1
ρ Lh is not (in general) symmetric and this will require a minor

modification of the conjugate gradient algorithm when this scheme is used together with the iteration (10).

For this explicit time-stepping and the error corrected time-stepping discussed below, we use the CFL
condition from [4]

∆t <
CFL · hmin

(p+ 3
2 )2
√

2µ+λ
ρ

, (18)

where hmin is the smallest diameter of the elements and CFL depends on the time-stepper. For the second
order centered scheme, we typically choose CFL ∼ 0.4–0.8.

4.3. Explicit Time-Corrected Scheme
If the elastic Helmholtz equation (8) is discretized directly, the solution satisfies the equation (in this

section we take ρ = 1 and for notational clarity we suppress the subscript h for vh and uh)

ω2v+ Lhv = f(x). (19)

Consider the elastic wave equation time marched with the second order method

un+1 − 2un + un−1 = ∆t2 [Lhun − f cos(ωtn)] , (20)

and started with the initial data

u0 = u0, u−1 = u0 −
∆t2

2
Lh (u0 + f) .

Then, as we showed in [3, 23] for the scalar wave equation, the fixed point iteration u(i+1) = Πu(i)
with

u(0) = 0 converges to u∞ which is a solution to the elastic Helmholtz equation with a modified frequency

ω̃2u∞(x) + Lhu∞(x) = f(x), ω̃ =
2 sin(∆tω/2)

∆t
. (21)

2www.mfem.org
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For this second order time discretization the difference between the final converged u∞ and the exact so-
lution is O(∆t2). Thus if a high order accurate spatial discretization is used, time discretization errors will
limit the accuracy of the El-WaveHoltz solution. To reduce this error, a time discretization which is at least

as accurate as the spatial discretization can be used. It is also possible, however, to use the technique

proposed by Stolk in [36] to modify the second order time-stepping method and eliminate the error alto-

gether. The corrected scheme in [36], introduced as a time-domain preconditioner, is the straightforward

modification

un+1 − 2un + un−1 =
ω̃2

ω2
∆t2 [Lhun − f cos(ωtn)] . (22)

As [36] solves the equations in the frequency domain no initial data is used. Here, as we work in the

time-domain, we must also modify the computation of u−1
accordingly:

u0 = u0, u−1 = u0 −
ω̃2

ω2

∆t2

2
Lh (u0 + f) .

4.4. Implicit Time-Corrected Scheme
For a DG discretization, the use of an explicit time-stepping scheme for the elastic wave equation re-

quires a CFL condition that shrinks as O(p−2) where p is the polynomial order within an element. For
meshes with geometrical stiffness and DG discretizations of high order an implicit scheme can be used to

avoid the restrictive time-step of an explicit scheme.

To that end, we use the following second order, A-stable implicit time-stepping scheme to solve the

elastic wave equation,

un+1 − 2un + un−1

∆t2
=

1

2
Lh(un+1 + un−1)− f cos(ωtn) cos(ω∆t). (23)

With a time-step ∆t = T/k for some integer k, the scheme (23) is completed by initial data

u0 = u0, u−1 =

(
I − ∆t2

2
Lh

)−1(
u0 −

∆t2

2
f cos(ω∆t)

)
.

As with the explicit method, El-WaveHoltz then converges to u∞ which satisfies the elastic Helmholtz
equation with a modified frequency

ω̃2u∞(x) + Lhu∞(x) = f(x), ω̃ = 2
sin(ω∆t/2)

∆t
√

cos(ω∆t)
. (24)

In a procedure similar to that done in the explicit case, it is possible to modify the implicit scheme to ensure

the converged El-WaveHoltz solution is free from time discretization errors. This requires the modified

scheme,

un+1 − αun + un−1

∆t2
=

1

2
Lh(un+1 + un−1)− f cos(ωtn) cos(ω∆t),

where

α = cos(ω∆t)(2 + ω2∆t2) ≈ 2− 5(ω∆t)4

12
+O(∆t6), (25)

with modified initial data

u0 = u0, u−1 =

(
I − ∆t2

2
Lh

)−1(
α

2
u0 −

∆t2

2
f cos(ω∆t)

)
.

For the stability of the method it is necessary to have |α| < 2. This choice of the time-step corresponds
to a (mild) requirement of at least five time-steps per iteration (See details in Appendix A).

9



Remark 3. The use of the above implicit scheme indeed allows one to circumvent a (potentially) restrictive
CFL condition and take significantly larger time-steps compared to the explicit scheme. However, we
note that a small number of time-steps can lead to inaccurate quadrature and values of the discrete filter
transfer function larger than one (see Appendix B for a discussion and example). Thus if an eigenvalue of
the discrete Laplacian is close to resonance (i.e. close to ω) and a small number of quadrature points are
used, then the linear system may become indefinite. In this case, we recommend using MINRES instead of
CG to accelerate convergence of El-WaveHoltz.
In the original WaveHoltz paper [3], an application of Weyl asymptotics for the continuous problem

eigenvalues gave that

δ ∼ ω−d,

where the relative gap to resonance, δ, is such that

δ = δj∗ , j∗ = arg min
j
|δj |, δj =

|ω − λj |
λj

,

and λj is an eigenvalue of the Laplacian. Thus in higher dimensions there are more and more “problematic”
modes close to resonance which would require a smaller time-step for accuracy of the trapezoidal rule
applied to the integral (10). An option to mitigate the indefiniteness of the linear system due to an inaccurate
trapezoidal rule would be to consider a higher order quadrature, or potentially identifying and removing
problematic modes via deflation.

Remark 4. We remark that it is also possible to remove the time discretization error by modifying the
weights in the trapezoidal rule as in [33]

2∆t

T

Nt∑
n=0

cos(ωtn)

cos( 2 sin(∆tω/2)
∆t tn)

(
cos(ωtn)− 1

4

)
un. (26)

It should however be noted that there is a risk that the denominator in this expression can become arbitrarily
close to zero unless care is taken. We do not use this technique in any of the examples in this paper.

4.5. Krylov Solution of the El-WaveHoltz Iteration
Let Πh and Sh be the matrices corresponding to a discretization of the El-WaveHoltz operators Π and

S using either the finite difference or the SIPDG method. Then the iteration is (in this section a superscript
(i) denotes iteration and a superscript n denotes time-step)

u(0)
h = 0,

u(i+1)
h = Πhu(i)

h , i = 0, 1, . . .

The solution to this fixed point iteration can also be found by solving

(I − Sh)uh = b ≡ Πh0 = u(1)
h , (27)

where the action of the matrix (I − Sh) requires (1) with f = 0 to be solved for one period, T = 2π/ω, and
the right hand side is pre computed by solving (1) with the f at hand.
Let Ah = I − Sh. We know from [3] that the eigenvalues of Ah are in the interval (0, 3/2) so that Ah

is positive definite. When applying Ah to u, we note that the methods for the elastic wave equation we
consider here produce solutions {u0,u1, . . . ,uNt} at time instances 0,∆t, 2∆t, . . ., according to the recursion

u−1 = a0u+ a1M
−1Wu, (28)

u0 = u, (29)

un+1 = κun − un−1 + γM−1Wun, (30)

10



for some diagonal matrix M , symmetric matrix W and scalars a0, a1, κ, γ. It follows that the matrix Ah is
in general not symmetric, as

Ahu =

Nt∑
n=0

αnun = P(M−1W )u, αn =

{
∆t
2 , n = 0 or n = Nt,

∆t, otherwise,
(31)

for some polynomial P of degree Nt − 1. However, MAh is symmetric as each term in MP(M−1W ) is
symmetric. Thus rather than applying the conjugate gradient method to (27), we instead solve

M(I − Sh)uh = Mb. (32)

We note that the main cost of applying the matrix Ah is in computing Shuh. Since the matrix M is diagonal
for the finite difference method and block-diagonal for SIPDG, the difference in cost between applying (32)

over (27) is small and amortized by the advantage of not having to store a Krylov subspace when using the

conjugate gradient or conjugate residual method.

Remark 5. In some of the experiments below we use the conjugate residual rather than conjugate gradient
method. The reason for this is that it has the property that the residual is non-increasing, which we have
found gives a predictable and robust iteration count when doing parameter sweeps over ω. When conjugate
gradient is used we sometimes observe that we get “lucky” and converge in very few iterations for a few
frequencies. When considering practical applications it is of course good to have such luck, but as we are
trying to present the average behavior of our method here we prefer conjugate residual.

5. Numerical Experiments

In this section we present numerical experiments that demonstrate the properties of the method. We

start with numerical experiments that demonstrate the spatial accuracy with and without the time-stepping

correction for the finite difference and the discontinuous Galerkin method. Unless otherwise specified,

the following computations were performed on Maneframe II at the Center for Scientific Computation at

Southern Methodist University using a dual Intel Xeon E5-2695v4 2.1 GHz 18-core Broadwell processor

with 45 MB of cache and 256 GB of DDR4-2400 memory.

5.1. Accuracy of the Finite Difference Method
We consider solving the elastic Helmholtz equation with Lamé parameters λ = µ = 1.0, where the

forcing function is chosen so that the displacements are given by

u = v = 162x2(x− 1)2y2(y − 1)2. (33)

Table 1: L1, L2 and L∞ errors of the computed solution with corresponding estimated rates of convergence.

n L1 error Convergence L2 error Convergence L∞ error Convergence

20 3.86(-3) - 3.86(-3) - 3.86(-3) -

40 9.21(-4) 2.06 9.21(-4) 2.06 9.21(-4) 2.06

80 2.25(-4) 2.03 2.25(-4) 2.03 2.25(-4) 2.03

160 5.55(-5) 2.02 5.55e(-5) 2.02 5.55(-5) 2.02

We take the frequency to be ω = 1.0 and enforce Dirichlet boundary conditions on the boundary of
the unit square (x, y) ∈ [0, 1]2. To verify accuracy, we set the tolerance to 10−15

for the conjugate residual

method as the stopping criteria and compute the error in u to the exact solution. We use the finite difference
method of Section 4.1 together with the standard explicit second order time-stepping scheme, and verify

11



the convergence of the method by grid refinement. To that end, we choose the coarsest grid to have n = 20
points along each direction and refine by a factor of two up to n = 160 points per direction. We compute

CFL = 1/
√

3µ+ λ and set the time-step size k = 0.4
√
|J | · CFL, where J is the Jacobian as described in

Section 4.1. In Table 1 we display estimated rates of convergence and observe second order convergence,

as expected.

5.2. Verification of Corrected Time-Steppers
We consider solving the elastic Helmholtz equation with λ = µ = 1.0 and choose the forcing so that

the exact solution is the same as (33). We take the frequency ω = 1 and enforce homogeneous Dirichlet
conditions on the boundary of the square (x, y) ∈ [0, 1]2. As the solution is a fourth degree polynomial,
choosing p = 4 should ensure that the solution to the discrete elastic Helmholtz equation is precisely
(33) (up to floating point arithmetic errors) . We use the conjugate gradient accelerated version of El-

WaveHoltz with the corrected second order centered time-stepping scheme presented in Section 4.3 or

with the corrected implicit time-stepping scheme from Section 4.4.

We partition the domain into four quadrilaterals of equal side length h = 0.5, set the relative conjugate
gradient residual tolerance to 10−15

, and consider the error as the time-step size is decreased.

We see from Figure 1 that the standard centered scheme leads to a discrete solution that converges

to the true solution at second order as ∆t decreases. The modified schemes on the other hand achieves
relative errors that are near machine precision with the error level varying slightly with the time-step size.

For the remaining numerical examples unless we state otherwise we use the explicit modified time-stepping

scheme to remove time discretization errors.

5.3. Accuracy of the Symmetric Interior Penalty Discontinuous Galerkin Method
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Figure 1: (Left) Convergence of the discrete WaveHoltz solution to the true solution of the discrete Helmholtz problem. Note that

the time-step size for the explicit and implicit methods are on the bottom and top, respectively, of the figure. (Right) Convergence of

the discrete WaveHoltz solution to the true solution of the discrete Helmholtz problem for a manufactured solution.

Next we verify the rates of convergence for our symmetric interior penalty DG solver and for non-

homogeneous problems using an example taken from [4]. We consider the unit square S = [0, 1]2 and
impose Dirichlet conditions on the boundary. The boundary conditions and forcing are chosen so that the

Helmholtz solution is

u(x, y) = sin(kxx+ x0) sin(kyy + y0),

v(x, y) = − sin(kxx+ x0) sin(kyy + y0),
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where kx = 2.5π, kx = 2π, x0 = 5, and y0 = −10. The mesh used is a uniform discretization of the unit
square split into smaller squares of side-length h = 1/2n for n = 1, . . . , 6.

Table 2: Estimated rates of convergence for the spatial discretization.

p 1 2 3 4 5 6 7 8

1.84 2.94 4.00 4.94 6.01 6.86 8.07 8.64

We set ω = 1 and choose the material parameters to be the constants µ = 1, λ = 2. Here we use the
modified time-stepping scheme of Section 4.3 with CFL = 0.4.
The errors are plotted in Figure 1 as a function of the grid size h. We additionally display estimated rates

of convergence calculated using linear least squares in Table 2 from which it is clear that the WaveHoltz

method converges with optimal rates with the error corrected time-stepper (which is formally only second

order accurate in ∆t).

5.4. Effects on Number of Iterations from Number of Periods and Accuracy

Figure 2: From top to bottom: displacement magnitude, σxx, σxy and σyy . The domain is [0, 8] × [0, 1] and the color scales are [0, 8],
[−50, 50], [−15, 15] and [−40, 40] respectively.

In this section we investigate the efficiency of the filter (12), defined overK periods, for various values
of K. Let NT be the number of time-steps for one period. Then we expect the reduction in the number of
all-to-all communications to be KNT when compared to a direct discretization of (8). Here we consider
energy conserving boundary conditions, for which we can use the conjugate gradient method and avoid the

need to store a Krylov subspace. We note that for problems with impedance or non-reflecting boundary

conditions (or with lower order damping terms), El-WaveHoltz will still result in a positive definite but

non-symmetric system which can be solved e.g. with GMRES. In that case, we also expect that the size

of the GMRES Krylov subspace will decrease by a factor KNT compared to direct discretization, and by a
factor K compared to using a single period for the filter procedure.
With these obvious advantages of filtering over K periods, it is natural to ask how the number of

iterations are affected by the increased filter time. In this experiment we numerically investigate this. To
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Table 3: The table displays the number of iterations required and the efficiency of the longer times to reduce the relative residual by

a factor 10−10
for the two cases (described in the text).

Periods 1 2 3 4 5 10

Case 1 (#iter) 124 69 51 43 39 28

Efficiency 1 0.90 0.81 0.72 0.64 0.44

Case 2 (#iter) 151 96 78 68 62 53

Efficiency 1 0.79 0.65 0.56 0.49 0.29

do so, we use the corrected explicit version of the DG solver and consider the shaking of a bar of (unitless)

length 8 and height 1. We impose free surface boundary conditions on the top, bottom, and right of the

domain, and on the left we set the boundary conditions to be

u(0, y, t) = v(0, y, t) = cos(ωt).

The base computational mesh uses 8 square elements each with side length 1, which we uniformly refine

by dividing each element into 4 parts for some number of refinements. We set λ = 2, µ = 1, ω = 5.123
and CFL = 0.8. We consider 2 cases: Case 1 uses p = 5 and refines the base grid 3 times, Case 2 uses
p = 15 and refines one time. For both cases we use conjugate gradient and count the number of iterations
it takes to reduce the relative residual by a factor 10−10

. The solution, along with the components of the

stress tensor σxx, σxy and σyy, are displayed in Figure 2. The number of iterations for the two cases
and the relative efficiency are tabulated in Table 3. Here the relative efficiency is computed via N1/KNK
where Nj is the number of iterations required to reach convergence using j periods. As can be seen, the
efficiency is relatively high when the number of periods are small and can thus be deployed if the all-to-all

communications (or the size of a GMRES Krylov space) becomes a limiting factor.

5.5. Iteration Count as a Function of Frequency for Rectangles and Annular Sectors
For energy conserving boundary conditions, the theoretical prediction (which is also observed experi-

mentally) is that the number of iterations scales as ωd in d-dimensions. In this and the next section, we study
how the number of iterations depends on the frequency in two and three dimensions. In this section we

additionally investigate the dependence of the number of iterations on frequency for different geometries

when the conjugate residual method is used. Here, we study these properties via three different computa-

tional domains: a rectangle, a quarter annulus, and a half annulus (all with a characteristic length of 5). We

use the finite difference method together with the standard explicit second order time-stepping scheme.

For each of the geometries we consider the set of frequencies ω = k +
√

2/10, with k = 3, 4, . . . , 40.
Let q and r be the coordinates in the (reference) unit square. We set nq and nr to be the number of cells

in each coordinate direction. The (spatial) step size is given by hq = 1/nq and hr = 1/nr, and our grid on the
unit square is given by

qi = ihq, i = 0, . . . , nq, rj = jhr, j = 0, . . . , nr.

We set the arc length of the outer arc at radii r
out

of the annular sector to be the length, L = 5. Thus for
the quarter annulus we have rout = 2L

π , and for the half-annulus we have rout = L
π . For both cases, we take

rin = rout − 1. Precisely, the coordinates of the two grids used for the quarter annular sector and the half
annular sector are

xij = (rin + (rout − rin)qi) cos
(
nan

π

2
rj −

π

2

)
,

yij = (rin + (rout − rin)qi) sin
(
nan

π

2
rj −

π

2

)
.

14



Figure 3: A plot of the (Left) rectangle, (Middle) quarter annulus, and (Right) half annulus regions.
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Figure 4: The number of iterations as a function of frequency to reach convergence for (Left) a rectangle, quarter circle and half circle,

and (Right) the unit cube with Dirichlet or free surface conditions.

Here nan is either 1 or 2 to indicate the quarter or half annulus, respectively, and plots of each region are

displayed in Figure 3. We set nr = 4Lω+ 1, nq = 4ω+ 1 so that the number of points per shear wavelength
is about 20.

For the forcing we use a discrete approximation of the delta function with amplitude ω2 cos(ωt). We
locate this point source at (xi∗j∗ , yi∗j∗) where i∗ = j∗ = (nq + 1)/2 so that it is close to (0.5, 0.5) in physical
space. In Figure 4 we display the number of iterations required to reduce the relative residual in the

conjugate residual method by a factor 10−8
. From Figure 4 we see that the results for the three geometries

are very similar, indicating that (in this example at least) the geometry has little to no effect on the number

of iterations needed. Moreover the number of iterations grow as ω2
, as expected.

5.6. Effect of Boundary Conditions in a Cube
In this experiment we consider the unit cube with either Dirichlet boundary conditions on all sides, or

with free surface boundary conditions on the top and bottom (z = 0 and z = 1) with Dirichlet boundary
conditions on all other sides. We use the 3D version of the finite difference method described above with

the standard explicit time-stepping method. Here we use the forcing

fj(x, t) = Aje
−σ2 ‖x−xj‖

2

,

with Aj ∼
√
σd and with σ ∼ ω so that each of the components of the forcing approaches a delta function

as ω grows. We select xj sightly different for each j so that both ∇ × f 6= 0 and ∇ · f 6= 0, resulting in a
solution with both shear and pressure waves.
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We use the conjugate residual method, keep the product hω = 0.4 fixed, and report the number of
iterations required to reduce the initial residual (starting from zero initial data) by a factor 10−9

. The result,

which can be found in Figure 4, confirms the prediction from [3] that the number of iterations scale as ω3
.

5.7. Iteration Count as a Function of Wave Speed Ratio
The length of a domain, when measured in number of wavelengths, will increase either if the physical

domain size is increased or if the wave speed is reduced. The pressure and shear wave speeds are Cp =√
(2µ+ λ)/ρ and Cs =

√
µ/ρ, respectively. We expect that the number of iterations will depend on the

smallest wave speed, but for El-WaveHoltz there is no intuitive reason to think that a problemwithCp � Cs

should be more difficult than a problem with Cp ≈ Cs. We note, however, that such behavior has been

reported in the literature (see e.g. Table 3.1 on page 11 of [37]) for other methods.

Table 4: The effect on iteration count depending on different combinations of λ and µ.

λ 1 2 4 8 16 32 64 1 1

µ 1 1 1 1 1 1 1 1/4 1/16

hmax × 102
3.37 3.37 3.37 3.37 3.37 3.37 3.37 1.10 0.852

hmin × 102
2.25 2.25 2.25 2.25 2.25 2.25 2.25 1.70 0.547

#Iter. 45 47 35 38 38 56 44 126 247

#Iter. ×√µ 45 47 35 38 38 56 44 63 62

To experimentally investigate how well El-WaveHoltz works for different combinations of µ and λ, we
use the SIPDG solver with the corrected explicit time-stepper for a geometry consisting of the unit square

with a circular hole cut out (see Figure 5). This is the mesh square-disc-nurbs.mesh, which is part of the
MFEM distribution. The Lamé parameters are constant in space and we choose the number of refinements

so that the solution is well resolved (the largest and smallest element size is reported in Table 4). We

impose the boundary conditions

u(0, y, t) = v(0, y, t) = cos(ωt),

on the outer part of the domain, and let the circular hole be free of traction. For all experiments we

set ω = 25.12, CFL = 0.8 and we evolve the El-WaveHoltz iteration over K = 3 periods. We stop the
CG iteration when the relative residual falls below 10−6

. In Figure 5 we display the magnitude of the

displacement and the components of the stress tensor σxy, σxx and σyy for the case when λ = 1 and
µ = 1/16.
The results, displayed in Table 4, show that El-WaveHoltz appears to be robust with respect to the

ratio between λ and µ. Moreover, the number of iterations to reach the desired tolerance is primarily a
function of µ, or equivalently, the shear wave speed Cs.

5.8. Comparison of Explicit and Implicit El-WaveHoltz with Direct Discretization of the Navier Equations
In this example we compare the explicit error corrected SIPDG method, the implicit error corrected

SIPDG method and the SIPDG method of MFEM’s example code example17p extended to the Navier equa-
tions (8). In this section we will refer to these solvers by the abbreviations WH, IWH and HH respec-

tively. For the Helmholtz SIPDG solver we use GMRES preconditioned by the AMG solver provided by the

HypreBoomerAMG class in MFEM. Specifically, we use the MFEM provided implementation of an elasticity
AMG solver that incorporates near null-space rigid body modes in the range of interpolation (see [8]). The

GMRES solver is restarted every 100 iterations. Here we would like to stress that we use the default

AMG parameter selections for the HH and IWH solvers and that there could be other parameter selections

that would have worked better for the two solvers. Therefore the results below represent a comparison

of the “plain vanilla” versions of the three methods rather than a comparison between the best tuned meth-

ods. We feel that this is gives a baseline comparison of the methods and also represent a typical practical

situation where the solver is only one part of a larger problem (say an inverse problem or a design problem)

and there is only limited time to tune the solver.
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Figure 5: From top left to bottom right: displacement magnitude, σxy , σxx and σyy .

For the implicit solver we must also invert the elasticity operator (but with a shift that preserves its

positive definiteness) and we do this using conjugate gradient preconditioned by the same AMG setup as

for the Helmholtz SIPDG solver. We always use 10 time-steps for the implicit solver, and for the explicit

solver we use CFL = 1.1 in (18). For the WH and IWH solver we solve the El-WaveHoltz problem with
conjugate gradient. For all three solvers the tolerance is set to be 10−10

.The implicit solver computations

were carried out on a dual Intel Xeon Platinum 8268 2.98 GHz 24-core processor.

We solve the equations on the unit square with a smooth (but narrow) forcing

f = −200ω2

π
e−1.2ω2[(x−0.25)2+(y−0.25)2]

(
−y + 0.5
x− 0.5

)
,

and with free surface boundary conditions on all sides. We consider different refinements and polynomial

degrees from 2 to 9 and estimate the error in the solution by computing a reference solution using degree

11 polynomials (note that the solutions are the same up to the tolerance of the iterative solvers since we

have eliminated the time errors).

For all of the computations we record the number of iterations (a maximum of 500000) and list them
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Table 5: Comparison of the number of iterations for the three different methods.

p = 1 2 3 4 5 6 7 8 9

h WH 57 102 115 126 132 138 141 144 148

h/2 WH 68 108 114 126 130 133 138 143 146

h/4 WH 79 107 114 122 130 135 137 142 146

h/8 WH 83 108 114 125 130 133 137 142 146

h IWH 81 182 160 173 213 237 192 235 201

h/2 IWH 97 151 157 168 220 263 188 276 196

h/4 IWH 112 147 153 163 171 178 264 188 275

h/8 IWH 117 147 154 165 171 213 217 N/A N/A

h HH 480 25084 18298 37926 80262 144863 204694 230688 500000

h/2 HH 15686 32063 57338 106688 256801 347279 500000 500000 500000

h/4 HH 46667 79865 184331 334665 500000 500000 500000 500000 500000

h/8 HH 500000 304561 500000 500000 500000 500000 500000 N/A N/A

in Table 5. We note that entries for which the simulation could not be run have been marked with N/A

for their iteration counts. It can be seen that the fewest number of iterations are achieved with the WH

method. We also note that the number of iterations for WH is insensitive to the mesh resolution and has a

weak dependence on the polynomial degree. Again, the latter is due to the fact that the linear system we

are solving comes from a bounded operator so that the condition number does not depend on h. HH, which
discretizes an unbounded and indefinite operator, behaves radically different with the number of iterations

increasing rapidly with decreasing mesh resolution. In addition, the number of iterations for the HH method

increases very quickly with the polynomial degree and, as a result, many of the accurate test cases fail to

converge. Similar to the WH method, the IWH method has an iteration count that is relatively robust under

grid refinement but with a slight increase with order. We note that it does appear the higher order methods

have more variation in iteration count than the lower order methods, and in general the iteration count is

larger than for the WH method.

The number of iterations displayed in Table 5 are not useful for comparing the different methods as each

iteration comes with a different computational cost. In Table 6 we instead list the number of right hand side

(rhs) evaluations. By a right hand side evaluation we mean a single application of the matrix corresponding

to the matrix discretizing the elastic operator. For the explicit method, the total number of rhs evaluations

isNTNiter, whereNT is the number of time-steps needed to evolve the elastic wave equation one period and
N
iter

is the number of iterations. For the IWH method we always take NT = 10 so that the number of rhs
evaluations is 10N

inner

N
iter

, where N
inner

is the number of inner iterations used by the AMG preconditioner

(as reported in Table 5). For the HH method the number of rhs evaluations is equal to the number of

GMRES iterations.

As can be seen in Table 6, the WH method is also more efficient with respect to the number of rhs

evaluations (note that we report total number of rhs for the WH method and multipliers for the other

methods). The advantage of the explicit method over the implicit method appears to be decreasing with

increased accuracy – both in terms of decreasing mesh size and increased polynomial order. This is not

unexpected as the number of time-steps needed for the explicit method grows linearly with the reciprocal

of the mesh size, and quadratically with the polynomial degree while the implicit method maintains the

number of time-steps constant. In terms of rhs evaluations, the gap between the WH method and the

HH method is smaller than between WH and IWH; though the HH method degrades with increasing mesh

refinement.

Finally, in Table 7 we report the increase in wall-clock time (as a multiplicative factor) for the IWH

and HH methods relative to the time required to solve the same problem with the explicit WH method.

Throughout, the WH method is one to two orders of magnitude faster than the other methods. The HH

method becomes less attractive (especially when it stops converging) as the accuracy is increased, while
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Table 6: The number of right hand side evaluations (estimated) for the three different methods. The top four rows display the actual

number of right hand side evaluations and the rows below indicate how many times more the HH and IWH method evaluates the right

hand side. An infinity sign indicates that the computation did not converge.

p = 1 2 3 4 5 6 7 8 9

h WH 1425 4998 9315 15120 22176 30774 40326 51552 64676

h/2 WH 3400 10476 18354 30240 43550 59318 78936 102245 127458

h/4 WH 7821 20758 36594 58438 86970 120285 156728 202918 254916

h/8 WH 16434 41904 73188 119750 173940 236873 313456 405836 509686

h IWH 81 96 67 63 72 72 53 60 48

h/2 IWH 72 67 59 53 69 70 46 59 40

h/4 IWH 59 59 51 48 46 41 57 36 49

h/8 IWH 50 53 47 43 42 46 42 N/A N/A

h HH 1 5 2 3 4 5 5 4 ∞
h/2 HH 5 3 3 4 6 6 ∞ ∞ ∞
h/4 HH 6 4 5 6 ∞ ∞ ∞ ∞ ∞
h/8 HH ∞ 7 ∞ ∞ ∞ ∞ ∞ N/A N/A

Table 7: The table reports how many times longer a computation with the HH and IWH method takes compared to the explicit WH

method.

p /meth 1 2 3 4 5 6 7 8 9

h IWH 192 197 137 113 103 90 59 73 44

h/2 IWH 169 185 125 112 107 121 55 42 29

h/4 IWH 261 295 61 152 62 68 71 36 42

h/8 IWH 28 30 100 69 62 46 34 N/A N/A

h HH 15 164 56 56 60 64 62 59 ∞
h/2 HH 265 157 109 96 117 113 ∞ ∞ ∞
h/4 HH 587 311 91 260 ∞ ∞ ∞ ∞ ∞
h/8 HH ∞ 224 ∞ ∞ ∞ ∞ ∞ N/A N/A

the IWH method improves with increased accuracy. It is of note that neither the number of iterations nor

the number of rhs is a good predictor of compute time. Possible causes for this discrepancy are, a) that we

only counted one right hand side evaluation per iteration and neglected the cost of the AMG preconditioner,

and b) that the GMRES solve for the HH method actually has a significantly higher cost than the conjugate

gradient method.

Remark 6. Given the additional computational cost per time-step of the implicit scheme, it would perhaps
be natural to hope for a significant improvement in run-time compared to the explicit scheme given how few
time-steps are used in comparison. As briefly discussed in Remark 3, a larger time-step size can lead to a
less accurate discrete filter. Informally, a coarser grid in time yields a wider discrete filter which leads to
more frequencies appearing to be “closer” to resonance than a continuous analysis would suggest. For the
above examples with uniform refinement, this requires a larger number of iterations to reach convergence
with a corresponding increase in rhs evaluation count as well as longer run-times. As we will see in the next
section, however, this may no longer be the case for meshes that are highly refined or have a wide variation
in element sizes due to the stricter CFL condition for explicit schemes.

5.9. Geometric Stiffness - Quarter Circle with a Small Cutout
In this example we highlight the use of the implicit method for meshes with large disparities in element

size. In particular we consider the geometry depicted in Figure 6 which has been discretized with a polar grid
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with equiangular spacing but with progressively coarser spacings in the radial direction. The ratio between

the largest and smallest element side is around one hundred. We impose homogenous Dirichlet boundary

conditions on all sides and force the problem with

f =
20000ω2

π
e−120ω2[(x−0.5)2+(y−0.5)2]

(
1
1

)
.

Figure 6: Geometry and mesh with a zoom in of the mesh near the semicircle with radii 0.01 to the right. The outer boundary is the

unit circle.

We again use the SIPDG solver with degree one elements. The implicit solver uses MFEM’s PCG solver

preconditioned by the AMG solver provided by MFEM’s HypreBoomerAMG class. Here we do not use the
elasticity specific options (see also [8]) as those appeared to make the convergence worse for this problem.

For this example we take ω = 20 and λ = µ = 1.

Table 8: The table compares time spent for the implicit and the explicit method to solve the quarter circle problem.

D.O.F 7200 28800 115200 460800 1843200

Time WH 1.00 3.5 18.3 127 5243

Time WHI-6 (MINR.) 1.8 2.3 5.4 24.7 535

Time WHI-10 1.2 2.6 5.3 21 329

Time WHI-20 1.5 2.7 5.3 18.3 297

Time increase WH - 3.5 5.3 7.0 41.1

Time increase WHI-6 (MINR.) - 1.3 2.3 4.6 21.7

Time increase WHI-10 - 2.2 2.0 3.9 15.8

Time increase WHI-20 - 1.9 2.0 3.5 16.2

For a sequence of 5 uniform refinements we compare the wall-clock time, number of iterations, number

of time-steps and (for the three implicit methods) the number of AMG iterations per time-step for the

explicit method and the implicit method with 6, 10 and 20 time-steps. For the 6 time-step solver we do

observe that the iteration matrix becomes very slightly indefinite as discussed in the appendix and thus we

use MINRES. For the 10 and 20 time-step we don’t observe any loss of positive definiteness and use CG

to accelerate the iteration.

The results can be found in Tables 8 and 9. In Table 8 we display the time (normalized by the time for

the explicit method on the coarsest grid) for the different methods along with the number of degrees of

freedom for each computation. We also display the time increase factor between two subsequent meshes

for each method. It is clear from the table that the implicit method can outperform the explicit method as

the mesh is refined. The implicit method that uses MINRES appears to be slightly less efficient.
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With each refinement the number of degrees of freedom increase by a factor of four and the element

sides are reduced by a factor of two. This implies that the number of time-steps required for the explicit

method also doubles with each refinement. One may therefore expect that the time for the explicit method

will grow by a factor of 8 with each refinement. On the other hand, if one makes the assumption that

the cost of the multigrid solver scales linearly with the number of degrees of freedom, the cost of the

implicit solver should increase by a factor of 4. The results in Table 8 are somewhat consistent with these

estimates, with the time increases approaching 8 and 4 from below for the 4 first levels of refinement. The

major outlier is the finest mesh for which the wall-clock times increases dramatically. Turning to Table 9 we

see that the increase in number of AMG iterations per time-step is gradual and does not change drastically

between the refinement levels, including the finest level. With this in mind, and as all the methods had

a jump in the wall-clock time, we attribute the increase in time to hardware limitations. In the final row

of Table 9 we compare the the ratio of number of time-steps taken between the explicit method and the

implicit method with 6, 10 and 20 time-steps. As expected the implicit methods take a significantly fewer

number of time-steps relative to explicit methods, especially for highly refined meshes.

Table 9: The table reports the cost of the IWH method in terms of AMG iterations per time-step for 6, 10 and 20 time-steps.

D.O.F 7200 28800 115200 460800 1843200

AMG / TS WHI-6 (MINR.) 44.70 48.10 59.50 82.80 118.30

AMG / TS WHI-10 46.11 49.09 61.50 86.00 129.71

AMG / TS WHI-20 38.30 42.80 52.90 72.00 104.76

AMG increase WHI-6 (MINR.) - 1.08 1.24 1.39 1.43

AMG increase WHI-10 - 1.06 1.25 1.40 1.51

AMG increase WHI-20 - 1.12 1.24 1.36 1.46

Fewer TS WHI-6 (MINR.) 1588 3212 6463 3890 31164

Fewer TS WHI-10 953 1928 3878 7779 15582

Fewer TS WHI-20 476 964 1939 3890 7791

5.10. Materials with Spatially Varying Properties
We next consider an example taken from [29] with elastic propagation in a heterogeneous medium. We

define the domain as Ω = [0, 2] × [0, 1] where there is an embedded inclusion, ΩI = [0.5, 1.5] × [0.4, 0.6], in
the middle from a stiffer material. We let ΩI be a material with λ = 200, µ = 100, while the domain Ω \ ΩI
has λ = 2 and µ = 1. We impose traction-free boundary conditions at y = 0, 1 and at x = 1. We additionally
have

u(0, y, t) =

(
0

cos(ωt)

)
, f(x, y, t)

(
0

δ(|x− x0|+ |y − y0|) cos(ωt)

)
,

where δ is a delta function centered at x0 = 0.1 and y0 = 0.5.
We use the SIPDG method of Section 4.2 with a uniform quadrilateral mesh and polynomial degree

p = 6. We consider two meshes with element widths of h1 = 1/20 and h2 = 1/40, respectively. We
use CFL = 0.4 with the (corrected) explicit second order time-stepper of Section 4.3, integrate over five
periods, and accelerate convergence with the conjugate gradient method with a relative residual tolerance

of 10−5
. We choose the frequency ω = 100 so that we have at least one element per wavelength when

using element widths of h1, and at least two when the widths are h2. We plot the log10 of the magnitude

of the displacement vector in Figure 7.

From Figure 7 it is clear that the solution using one element per wavelength is visually quite similar to

that of the refined mesh with two elements per wavelength. Thus using one element per wavelength with

a higher order polynomial order is sufficient to produce reasonable results, as was similarly observed in

[38]. Moreover, the iteration counts are similar with 634 and 630 iterations required to reach a relative

residual tolerance of 10−5
for elements of size h1 = 1/20 and h2 = 1/40, respectively.
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Figure 7: The log10 of the magnitude of the displacements for the CG accelerated solution of WH for the inclusion problem using sixth

order polynomials within each element. (Left) Solution using a grid resolution of at least one element per wavelength, and (Right) two

elements per wavelength.

5.11. Vibrations of a Toroidal Shell
Finally, as a more realistic example in three dimensions we perform a simulation of a toroidal shell

parametrized by

x(θ, φ, r) = (R+ r cos(θ)) cos(φ), y(θ, φ, r) = (R+ r cos(θ)) cos(φ), z(θ, φ, r) = r sin(θ).

Here we set R = 4, and let the partial toroidal shell occupy the volume 1 ≤ r ≤ 2, and 0 ≤ φ, θ ≤ π.
The surfaces at r = 1 and r = 2 are free, and we impose homogeneous Dirichlet conditions on all other
boundaries.

We force the problem by

f =

√
σ3

20

 1
1
1

 e−ζ
2

cos(ωt), σ = 100ω, ζ2 = 0.5σ((x− 4)2 + (y − 0.5)2 + (z − 1)2.

We consider three cases of increasing difficulty: 1) ω = 5.1234 with a grid of 400 × 120 × 40 points; 2)
ω = 10.2468 with a grid of 400 × 120 × 40 points; 3) ω = 20.276 with a grid consisting of 1600 × 480 × 160
points. The largest computation thus solves the elastic Helmholtz problem for a system of equations with

roughly 3.6 · 108
degrees of freedom. We use the conjugate residual method, set a residual tolerance of

10−5
and obtain convergence in 1490, 2875, and 3713 iterations for cases 1), 2), and 3), respectively.

The converged solutions are displayed in Figure 8. The projection onto the xy-plane is the magnitude

of the displacement

√
u2 + v2 + w2

on the outermost free surface, r = 2. The mesh is the grid for that
outermost surface with the (scaled) displacements added to the grid coordinates.
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Figure 8: The solution in the toroidal shell for (Left) ω = 5.1234, (Middle) ω = 10.2468, and (Right) ω = 20.276. The projection onto
the xy-plane is the magnitude of the displacement on the outermost free surface r = 2. In black we display the (scaled) displaced
mesh for r = 2.
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6. Conclusion

In this paper we applied the WaveHoltz iteration, a time-domain Krylov accelerated fixed-point iter-

ation, to the solution of the elastic Helmholtz equation for interior problems with Dirichlet and/or free

surface boundary conditions. With symmetric discretizations, the iteration results in a positive definite and

symmetric matrix with a condition number that is bounded as the discretization parameter h→ 0, a notable
advantage over direct discretizations of the elastic Helmholtz equation which typically lead to highly in-

definite systems with condition numbers that grow as h−2
. In this work we have also proposed corrected

time-stepping schemes and demonstrated that their use in the WaveHoltz iteration completely removes

time discretization errors.

Furthermore, we have introduced a new implicit time-stepping scheme for the El-WaveHoltz method,

which can offer some advantage over an explicit scheme, especially for high order, highly refined meshes

with disparate element sizes. We believe that the implicit method could also be advantageous for anisotropic

problems, and could potentially be an avenue for constructing polynomial/rational preconditioners due to

the small number of time-steps afforded by an implicit scheme.

Finally, here we have only considered the energy conserving problem. In the future, we will revisit the

elastic Helmholtz problemwith impedance/absorbing boundary conditions which are a hallmark of scattering

and seismic applications.
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Appendix

Appendix A. Time-step Restriction

To understand how restrictive the requirement (25) is, we plot α for various values of ω∆t below in
Figure A.9.
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Figure A.9: Values of α = cos(ω∆t)(2 +ω2∆t2) for values of ω∆t in the interval [0, 2]. The red lines indicate the desired bound on α,
and the black line indicates the maximum allowable value of ω∆t at r ≈ 1.93.

From Figure A.9 we see that |α| < 2 for ∆t < r/ω where r ≈ 1.93. This choice of the time-step
corresponds to a requirement of at least four time-steps per iteration. However, the WaveHoltz kernel
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2(cos(ωtn) − 1/4)/T evaluates to a constant if four time-steps are taken for the forward solve. Thus at
least five time-steps are needed for stability.

Appendix B. Accuracy of the Discrete Filter Transfer Function

Consider the (continous) rescaled filter transfer function,

β̄(r) := β(rω) =
2

T

∫ T

0

(
cos(ωt)− 1

4

)
cos(rωt)dt =

1

π

∫ 2π

0

(
cos(t)− 1

4

)
cos(rt)dt,

with discrete analogue (via trapezoidal rule)

β̄h(r) =
∆t

π

M∑
n=0

ηn cos(rtn)

(
cos(tn)− 1

4

)
, ηn =

{
1
2 , n = 0 or n = M,

1, 0 < n < M.

Let us now take a look at the rescaled discrete filter function, β̄h(r). It is sufficient to consider only the
range r ∈ [0, k/4], which we plot in Figure B.10.
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Figure B.10: A plot of the discrete filter function using five time-steps 0 ≤ r ≤ 5/4. On the left we plot the full range of values of r,
and on the right we zoom in close to resonance, i.e. r = 1.

From Figure B.10 we see that it is possible to integrate and get eigenvalues of the WHI operator to be

larger than one for a small range near resonance, r = 1. To get a sense of the size of this gap, we perform
a simple bisection where we find the leftmost point r∗ < 1 such that βh(r∗) = 1 for increasing number of
quadrature points k = 5, 6, . . . , 100. We plot the result below in Figure B.11.
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Figure B.11: A bound on the gap from resonance that creates problematic modes. The blue curve is the true gap, 1 − r∗, and the
dotted red curve is a proposed bound.

From Figure B.11 we see that, perhaps unsurprisingly, the gap shrinks with increasing number of quadra-

ture points. The curve in red in Figure B.11 indicates the bound

1− r∗ ≤ 0.022 ·∆t2,

so that we see that this gap shrinks as∆t2. Moreover, if |1− r| ≥ 0.022 ·∆t2 then |βh(r)| < 1. For r = λ̃j/ω,
we may thus obtain convergence of the iteration if it can be guaranteed the time-step is chosen such that

λ̃j 6∈ [ω(1− 0.022 ·∆t2), ω].
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