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Garcia, Fortino (Ph.D., Applied Mathematics)

Numerical Methods for Wave Phenomena

Thesis directed by Prof. Daniel Appelö

This dissertation describes numerical methods for wave phenomena and is divided into two

main sections. The first concerns a new time-domain approach to solving the Helmholtz equation.

The second concerns numerical methods for the optimal control of closed quantum systems.

The efficient solution of the Helmholtz equation is an active area of research. Traditionally,

many methods in the literature take the approach of solving the Helmholtz equation “directly”.

By directly we mean solving the Helmholtz equation in the frequency domain, whether by a direct

discretization of the PDE via finite differences/elements or by integral equation methods. An

alternative approach is to instead solve the Helmholtz equation by seeking time-harmonic solutions

in the time-domain. In this thesis we present the WaveHoltz iteration, which is a fixed-point

iteration for solving the Helmholtz equation by instead solving a sequence of wave equations. We

demonstrate that WaveHoltz is amenable to acceleration via Krylov subspace methods. Moreover

we show that WaveHoltz is simple to implement, inherits the memory-leanness and scalability of

the underlying wave equation discretization, and that it is possible to remove time-discretization

errors from the WaveHoltz solution.

The second part of the thesis introduces tools for devising optimal controls to realize logic

gates in closed quantum systems. We motivate a novel approximation of control functions via

B-spline wavelets with carrier waves that are specifically constructed to trigger the transition fre-

quencies of a quantum system. Using the symplectic and time-reversible Störmer-Verlet scheme, we

take a “discretize-then-optimize” approach to determine a corresponding adjoint partitioned Runge

Kutta scheme. This allows the computation of exact discrete gradients for the quantum optimal

control problem. Finally, we outline a submitted solution to the IBM SWAP Gate Challenge using

these methods.
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Chapter 1

Introduction

Many problems of practical interest in diverse areas such as acoustics, seismics, and quantum

mechanics are governed by equations in which the solution is defined by a wave or a superposition of

waves. Waves exist at an incredibly wide range of scales, and their accurate numerical treatment is

of great practical importance. In acoustic scattering problems, for instance, it is desirable to obtain

time-harmonic solutions to the wave equation. These solutions satisfy the Helmholtz equation,

the efficient and scalable solution of which is an active area of research (see the review articles [47,

50, 44]). On a much smaller scale, the wave-particle duality is a foundational principle of quantum

mechanics which implies that all information about a particle is contained in its wave function.

This wave function, which can be interpreted as a probability distribution, evolves according to the

Schrödinger equation and is key to understanding how we may eventually exploit the nascent

power of quantum computers.

In either case, the numerical treatment of wave propagation problems requires high-order

accurate and efficient numerical methods. These methods must be able to scale well in many

dimensions, and potentially simulate over long distances and/or times. This thesis will develop

numerical methods for two different wave problems: (1) an iterative wave equation solution method

for Helmholtz problems, and (2) optimizing control functions for realizing logical gates in closed

quantum systems, where the evolution of the state vector is governed by the time dependent

Schrödinger equation.

The chapters of this thesis are thus separated into two broad sections. The first section,
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Chapters 2-4, concern time-domain methods for Helmholtz problems. The second section, Chap-

ters 5-6, concern both theory and practice of optimal control methods for quantum systems. In

each section, there is considerable overlap in notation but this notation is generally restated and

redefined within each chapter so that they may be read independently. Each of Chapters 2-5

has either been published [14], submitted for publication [94], or is to be submitted for publica-

tion [51, 13].

1.1 Outline of chapters

The first section of the thesis, Chapters 2-4, focus on time-domain methods for solving the

Helmholtz equation. In Chapter 2 we introduce the WaveHoltz iteration, which is a fixed-point

iteration that filters the solution of the wave equation with time-periodic forcing and boundary

data. We show that the WaveHoltz iteration can be recast as a positive definite linear system

of equations which can be solved using Krylov subspace techniques. We additionally present a

continuous and discrete analysis for energy-conserving problems.

In Chapter 3, we extend the analysis of the energy-conserving WaveHoltz iteration to prob-

lems with damping and/or impedance boundary conditions. Furthermore, we investigate higher

order modified equation timestepping schemes and show that the WaveHoltz solution converges to

the discrete Helmholtz solution to the order matching the order of the timestepping scheme. We

then present a method to completely remove time discretization error from the WaveHoltz solution.

In Chapter 4, we apply the WaveHoltz iteration to the “elastic” Helmholtz equation (also

known as the Navier equation) for energy-conserving problems with Dirichlet and/or free surface

boundary conditions. We present a discrete analysis for an implicit timestepping scheme in which

time discretization errors are removed.

In the second section of the thesis, Chapters 5-6, we consider optimal control methods for

quantum systems. In Chapter 5, we describe an optimal control problem for closed quantum

systems governed by Schrödinger’s equation. We motivate and describe the novel use of B-splines

with carrier waves to interpolate control functions, which allow the number of parameters to be



3

independent of the number of timesteps used in the simulation. The system is discretized with the

Störmer-Verlet scheme, which is a symplectic partitioned Runge-Kutta scheme. Using a “discretize-

then-optimize” approach, we derive a discrete timestepping scheme used to compute exact discrete

gradients at the cost of solving two Schrödinger systems. The methods described in this chapter

have been implemented in the Julia programming language, [1], and are made available as the open-

source package Juqbox (available through GitHub at https://github.com/LLNL/Juqbox.jl).

In Chapter 6, we apply the methods of Chapter 5 to the IBM SWAP Gate Challenge. We

describe the approach taken for a submission to the SWAP Gate Challenge, and present the results

of building a custom gate for a real-word noisy quantum system.

Finally in Chapter 7, we summarize the results of the thesis. Additionally, future research

directions are discussed.



Chapter 2

WaveHoltz: Iterative Solution of the Helmholtz Equation via the Wave

Equation

The defining feature of waves are their ability to propagate over large distances without

changing their shape. It is this property that allows them to carry information which underpins all

communication, be it through speech or electronic transmission of data. Waves can also be used to

probe the interior of the earth, the human body or engineering structures like buildings or bridges.

This probing can be turned into images of the interior by the means of solving inverse problems.

Harnessing the nature of waves requires high-order accurate and efficient numerical methods that

are able to simulate wave propagation in three dimensions and over long distances. For cutting

edge problems in scientific and engineering research such simulations must be carried out on parallel

high-performance computing platforms and thus the numerical methods must scale while being easy

to implement and generally applicable.

In this chapter we focus on approximating solutions to the scalar wave equation in the

frequency domain, i.e. the Helmholtz equation

∇ · (c2(x)∇u) + ω2u = f(x). (2.1)

However, to to obtain such solutions we will use time domain discretizations of the wave equation.

The motivation for developing high order accurate and scalable Helmholtz solvers comes from both

mathematics and applications. On the mathematics side the recent results by Engquist and Zhao

[42] give sharp lower bounds on the number of terms in a separated representation approximation

of the Green’s function of the Helmholtz equation as a function of the frequency (wavenumber).
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These bounds limit the applicability of the state of the art sweeping preconditioners in the high

frequency regime and, for example, for interior and wave guide problems. Motivation also comes

from applications in seismology, optics and acoustics. For example in full waveform inversion the

problems are very large and the robustness of the inversion process can be enhanced by combining

frequency and time domain inversion in a multi-scale fashion to avoid getting trapped in local

minima.

Designing efficient iterative solvers for the Helmholtz equation (2.1) is notoriously difficult

and has been the subject of much research (for detailed reviews see Ernst and Gander, [47], Gander

and Zhang [50], and Erlangga, [44]). The main two difficulties in solving the Helmholtz equation

are the resolution requirements and the highly indefinite character of the discretized system of

equations.

Assuming that (2.1) has been scaled so that the mean of c(x) is about 1 then the typical

wavelength is λ = 2π/ω and the typical wavenumber is ω/2π. In order to numerically propagate

solutions to the time dependent wave equation corresponding to (2.1) with small errors it is crucial

to control the dispersion by using high order methods. The basic estimate by Kreiss and Oliger

[75] shows that in order to propagate a wave over J wavelengths with a pth order finite difference

method and with an error no greater than ε one must choose the number of points per wavelength

PPW(J, p) as

PPW(J, p) ≥ C(p, ε)J
1
p .

Here C(p, ε) depends on the tolerance ε but decreases with increasing order of accuracy p. Con-

sequently, for a problem in d-dimensions and with fixed physical size the number of wavelengths

in the domain will scale as ωd and to maintain a fixed tolerance the total number of degrees of

freedom needed, Np(ω) = O(ω
d(1+ 1

p
)
), is very large for high frequencies.

The dependence on p and ω in Np(ω) immediately reveals two fundamental criteria for de-

signing high frequency Helmholtz solvers:

1. The solvers must be parallel, memory lean and they must scale well. In 3D the number
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of degrees of freedom representing the solution cannot be stored on a single computer, and

even on a parallel computer it is important to preserve the sparsity of the discrete version

of (2.1).

2. The underlying discretizations must be high order accurate. At high frequencies and in

3D the extra penalty due to pollution / dispersion errors becomes prohibitive.

Further, the linear system matrix, A, resulting from direct discretization of (2.1) is indefinite

so that the robust and easy to implement preconditioned conjugate gradient (PCG) method cannot

be used. Instead the method of necessity becomes the preconditioned generalized minimal residual

method (GMRES). To efficiently precondition GMRES one must exploit the intrinsic properties of

the wave equation. The oscillatory nature of the Helmholtz Green’s function and its discrete coun-

terpart A−1 can only be well approximated if the (unconditioned) Krylov subspace is allowed to

grow quite large (with “large” scaling adversely with the frequency ω , [47]). The slow growth of the

“spanning power” of the Krylov vectors is due to the underlying local connectivity of the discretiza-

tion, preventing information to propagate rapidly. Efficient preconditioners must thus accelerate

the propagation of information or reduce the cost of each iteration. Without preconditioners the

iteration typically stagnates.

Perhaps the first contribution that aimed to improve the propagation of information was the

Analytic Incomplete LU preconditioner (AILU) by Gander and Nataf [49]. The AILU precondi-

tioner finds an LDLT factorization from an approximation of the same pseudodifferential operators

that are used to construct non-reflecting boundary conditions [39, 6, 66] and sweeps forward then

backward along one of the coordinate directions in a structured grid.

The pioneering works on sweeping preconditioners by Engquist and Ying [40, 41] were major

breakthroughs in the solution of the Helmholtz equation. Similar to the AILU, the preconditioners

in [40, 41] use a LDLT decomposition but exploit the low rank properties of off-diagonal blocks

together with perfectly matched layers to obtain solvers that converge in a small number of GMRES

iterations. The papers [40, 41] were the two first instances of iterative Helmholtz solvers that
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converge in a small number of iterations that is almost independent of frequency.

Once it had been established that low rank approximations, combined with clever use of

sweeping and perfectly matched layers (PML), could be used to find Helmholtz solvers with linear

scaling then many extensions and specializations were constructed. For example, in [100] Stolk

introduced a domain decomposition method with transmission conditions based on the perfectly

matched layer (PML) that is able to achieve near linear scaling. Chen and Xiang, [34], and Vion and

Geuzaine, [105], also considered sweeping domain decomposition method combined with PML and

showed that their methods could be used as efficient preconditioners for the Helmholtz equation.

The method of polarized traces by Zepeda-Núñez, Demanet and co-authors, [113, 112, 111], is a

two step sweeping preconditioner that compresses the traces of the Greens function in an offline

computation and utilizes incomplete Green’s formulas to propagate the interface data. See also the

recent review by Gander and Zhang [50] for connections between sweeping methods.

Alongside iterative methods there are some attractive direct and multigrid methods. Exam-

ples from the class of direct methods are the Hierarchically Semi-Separable (HSS) parallel multi-

frontal sparse solver by deHoop and co-authors, [107], the spectral collocation solver by Gillman,

Barnett and Martinsson, [57], and the p-FEM approach of Bériot, Prinn and Gabard, [23], which

utilizes an a priori error indicator to choose the polynomial order of each element . Notable exam-

ples of multigrid methods are the Wave-ray method by Brandt and Livshits [28, 81] and the shifted

Laplacian preconditioner with multigrid by Erlangga et al. [43].

As mentioned previously, the invention of sweeping preconditioners was a breakthrough and

it is likely that they will have lasting and continuing impacts for the solution of the Helmholtz

equation in various settings. There are, however, some limitations. First, in the recent paper [42],

Engquist and Zhao provide precise lower bounds on how the number of terms that are needed

to approximate the Helmholtz Green’s function depends on the frequency. In particular, for the

high frequency regime they show that for interior problems and waveguides the rank of the off-

diagonal elements grows fast, rendering sweeping preconditioners less efficient. They also show that

the situation is, in general, worse in 3D than in 2D. This lack of compressibility may, in cases of
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practical importance, increase the cost of both the factorization and compression as well as the

application of the compressed preconditioner. We note that this loss of compressibility at high

frequency will also prevent direct methods such as [107, 57, 23] from reaching their most efficient

regimes. An additional drawback of direct methods is their memory consumption for 3D problems.

Another potential drawback with the sweeping methods is the long setup times before the

solve. Of course all of the algorithms above do not suffer from this deficiency but many of them

do. This may not be problematic when considering a background velocity that does not change but

this is not the case, for example, when inverting for material parameters. In this case the velocity

model will change constantly, necessitating a costly factorization in each update.

Finally, the two criterions 1.) and 2.) above are not so easy to meet for sweeping precondi-

tioners. The sweep itself is intrinsically sequential and although there have been at least partially

successful attempts to parallelize the sweeping methods it is hard to say that they are easy to

parallelize in a scalable way. In a similar vein most of the methods use (and some rely on) low

order discretizations. Although it is possible to use higher order accurate discretizations together

with sweeping preconditioners, their scarcity in the literature is noticeable.

Another approach that is somewhat popular in the engineering literature is to simply run

the wave equation for a long time to get a Helmholtz solution, see e.g. [70]. The theoretical

underpinning of this approach is the limiting amplitude principle which says that every solution to

the wave equation with an oscillatory forcing, in the exterior of a domain with reflecting boundary

conditions tends to the Helmholtz solution. However, since the limiting amplitude principle only

holds for exterior problems this approach does not work for interior problems and becomes very

slow for problems with trapping waves. See e.g. the articles by Ladyzhenskaya [76], Morawetz [88]

and Vainberg [104].

An alternative approach, the so called Controllability Method (CM), was originally proposed

by Bristeau et al. [29]. In the CM the solution to the Helmholtz equation is found by solving a

convex constrained least-squares minimization problem where the deviation from time-periodicity

is minimized in the classic wave equation energy. The basic ingredients in an iteration step in CM
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are: a.) the solution of a forward wave and a backward wave equation over one time-period, and

b.) the solution of a symmetric coercive elliptic (and wave number independent) problem.

In [29] and the later spectral element implementations of CM by Heikkola et al. [69, 68] only

sound-soft scatterers were considered. For more general boundary conditions the minimizer of the

cost functional of [29] is not unique but alternative cost functionals that does guarantee uniqueness

(and thus convergence to the Helmholtz solution) were recently proposed by Grote and Tang in

[63]. We also note that if the wave equation is formulated as a first order system it is possible to

avoid solving the elliptic problem [58, 61].

In what follows we will present an alternative to the controllability method. Our method,

which we call the WaveHoltz Iteration method (WHI), only requires a single forward wave equation

solve and no elliptic solves but produces a positive definite (and sometimes symmetric) iteration

that can be accelerated by, e.g. the conjugate gradient method or other Krylov subspace methods.

As the WaveHoltz iteration is built from a time domain wave equation solver we claim and hope

to demonstrate that it meets both criterion 1. and 2. above.

The rest of the chapter is organized as follows. In Section 2 we present and analyze our

method and its extensions, in Section 3 we briefly outline the numerical methods we use to solve

the wave equation, in Section 4 we present numerical experiments, and in Section 5 we summarize

and conclude.

Before proceeding we would like to acknowledge that although our method is distinct from

the controllability method, it was the work by Grote and Tang, [63], that introduced us to CM and

inspired us to derive the method discussed below.

2.1 WaveHoltz: A New Method for Designing Scalable Parallel Helmholtz

Solvers

We consider the Helmholtz equation in a bounded open smooth domain Ω,

∇ · (c2(x)∇u) + ω2u = f(x), x ∈ Ω, (2.2)
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with boundary condtions of the type

iαωu+ β(c2(x)~n · ∇u) = 0, α2 + β2 = 1, x ∈ ∂Ω. (2.3)

We assume f ∈ L2(Ω) and that c ∈ L∞(Ω) with the bounds 0 < cmin ≤ c(x) ≤ cmax < ∞ a.e. in

Ω. Away from resonances, this ensures that there is a unique weak solution u ∈ H1(Ω) to (2.2).

Due to the boundary conditions u is in general complex valued.

We first note that the function w(t, x) := u(x) exp(iωt) is a T = 2π/ω-periodic (in time)

solution to the forced scalar wave equation

wtt = ∇ · (c2(x)∇w)− f(x)eiωt, x ∈ Ω, 0 ≤ t ≤ T,

w(0, x) = v0(x), wt(0, x) = v1(x),

αwt + β(c2(x)~n · ∇w) = 0, x ∈ ∂Ω, (2.4)

where v0 = u and v1 = iωu. Based on this observation, our approach is to find this w instead of u.

We could thus look for initial data v0 and v1 such that w is a T -periodic solution to (2.4). However,

there may be several such w, see [63], and we therefore impose the alternative constraint that a

certain time-average of w should equal the initial data. More precisely, we introduce the following

operator acting on the initial data v0 ∈ H1(Ω), v1 ∈ L2(Ω),

Π

 v0

v1

 =
2

T

∫ T

0

(
cos(ωt)− 1

4

) w(t, x)

wt(t, x)

 dt, T =
2π

ω
,

where w(t, x) and its time derivative wt(t, x) satisfies the wave equation (2.4) with initial data

v0 and v1. The result of Π[v0, v1]T can thus be seen as a filtering in time of w(·, x) around the

ω-frequency. We will further motivate the choice of time averaging in the analysis below. By

construction, the solution u of Helmholtz now satisfies the equation u

iωu

 = Π

 u

iωu

 . (2.5)
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The WaveHoltz method then amounts to solving this equation with the fixed point iteration

 v

v′


(n+1)

= Π

 v

v′


(n)

,

 v

v′


(0)

≡ 0. (2.6)

Provided this iteration converges and the solution to (2.5) is unique, we obtain the Helmholtz

solution as u = limn→∞ v
n.

Remark 2.1.1. Note that each iteration is inexpensive and that T is reduced by the reciprocal of ω

as ω grows. If we assume that the number of degrees of freedom in each dimension scales with ω and

that we evolve the wave equation with an explicit method this means that the number of timesteps

per iteration is independent of ω. Also note that the iteration is trivial to implement (in parallel or

serial) if there is already a time domain wave equation solver in place. The integral in the filtering

is carried out independently for each degree of freedom and simply amounts to adding up a weighted

sum (e.g. a trapezoidal sum) of the solution one timestep at a time. Finally, note that WHI allows

all the advanced techniques that have been developed for wave equations (e.g. local timestepping,

non-conforming discontinuous Galerkin finite elements h- and p-adaptivity etc.) can be transferred

to the Helmholtz equation and other time harmonic problems.

2.1.1 Iteration for the Energy Conserving Case

Here we consider boundary conditions of either Dirichlet (β = 0) or Neumann (α = 0) type.

This is typically the most difficult case for iterative Helmholtz solvers when Ω is bounded. The

wave energy is preserved in time and certain ω-frequencies in Helmholtz are resonant, meaning they

equal an eigenvalue of the operator −∇· (c2(x)∇). Moreover, the limiting amplitude principle does

not hold, and one can thus not obtain the Helmholtz solution by solving the wave equation over a

long time interval.

We start by introducing a simplified iteration for this case. With the given boundary condi-

tions the solution to Helmholtz will be real valued, since f is a real valued function. Without loss

of generality, we may then take wt(0, x) = 0 and w(t, x) = u(x) cos(ωt), since for a T -periodic real
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valued solution there is a time when wt(0, x) = 0. We choose that time as the initial time so that

(2.4) becomes

wtt = ∇ · (c(x)2∇w)− f(x) cos(ωt), x ∈ Ω, 0 ≤ t ≤ T,

w(0, x) = v(x), wt(0, x) ≡ 0,

αwt + β(c2(x)~n · ∇w) = 0, x ∈ ∂Ω. (2.7)

The simplified iteration is then defined as

vn+1 = Πvn, v0 ≡ 0, (2.8)

where

Πv =
2

T

∫ T

0

(
cos(ωt)− 1

4

)
w(t, x)dt, T =

2π

ω
, (2.9)

with w(t, x) solving the wave equation (2.7) with initial data v = vn ∈ H1(Ω). We now analyze

this iteration.

By the choice of boundary conditions the operator −∇ · (c2(x)∇) has a point spectrum

with non-negative eigenvalues with corresponding eigenfunctions that form an orthonormal basis

of L2(Ω) . Denote those eigenmodes (λ2
j , φj(x)), with ‖φj‖L2(Ω) = 1 . We assume that the angular

frequency ω is not a resonance, i.e. ω2 6= λ2
j for all j. The Helmholtz equation (2.2) is then

wellposed.

We recall that for any q ∈ L2(Ω) we can expand

q(x) =

∞∑
j=0

q̂jφj(x),

for some coefficients q̂j and

||q||2L2(Ω) =

∞∑
j=0

|q̂j |2, c2
min||∇q||2L2(Ω) ≤

∞∑
j=0

λ2
j |q̂j |2 ≤ c2

max||∇q||2L2(Ω).

We start by expanding the Helmholtz solution u, the initial data v to the wave equation (2.7), and

the forcing f in this way,

u(x) =
∞∑
j=0

ûjφj(x), v(x) =
∞∑
j=0

v̂jφj(x), f(x) =
∞∑
j=0

f̂jφj(x).
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Then,

−λ2
j ûj + ω2ûj = f̂j ⇒ ûj =

f̂j
ω2 − λ2

j

.

For the wave equation solution w(t, x) with initial data w = v and wt = 0 we have

w(t, x) =
∞∑
j=0

ŵj(t)φj(x), ŵj(t) = ûj

(
cos(ωt)− cos(λjt)

)
+ v̂j cos(λjt). (2.10)

The filtering step (2.9) then gives

Πv =
∞∑
j=0

v̄jφj(x), v̄j = ûj(1− β(λj)) + v̂jβ(λj),

where

β(λ) :=
2

T

∫ T

0

(
cos(ωt)− 1

4

)
cos(λt)dt.

We introduce the linear operator S : L2(Ω)→ L2(Ω),

S
∞∑
j=0

ûjφj(x) :=
∞∑
j=0

β(λj)ûjφj(x), (2.11)

which gives the filtered solution of the wave equation with f = 0, when applied to the initial data

v. We can then write the iteration as

vn+1 = Πvn = S(vn − u) + u. (2.12)

The operator S is self-adjoint and has the same eigenfunctions φj(x) as −∇· (c2(x)∇) but with the

(real) eigenvalues β(λj). The convergence properties of the iteration depend on these eigenvalues

and it is therefore of interest to study the range of the filter transfer function β. Figure 2.1 shows

a plot of β which indicates that the eigenvalues of S are inside the unit interval, with a few of

them being close to 1 (when λj ≈ ω), and most of them being close to zero (when λj � ω). In the

appendix we show the following lemma about β.
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Figure 2.1: The filter transfer function β for ω = 10.

Lemma 2.1.1. The filter transfer function β satisfies β(ω) = 1 and

0 ≤ β(λ) ≤ 1− 1

2

(
λ− ω
ω

)2

, when

∣∣∣∣λ− ωω
∣∣∣∣ ≤ 1

2
,

|β(λ)| ≤ 1

2
, when

∣∣∣∣λ− ωω
∣∣∣∣ ≥ 1

2
,

|β(λ)| ≤ b0
ω

λ− ω
, when λ > ω.

where b0 = 3
4π . Moreover, close to ω we have the local expansion

β(ω + r) = 1− b1
( r
ω

)2
+R(r/ω)

( r
ω

)3
, b1 =

2π2

3
− 1

4
≈ 6.33, ||R||∞ ≤

5π3

6
. (2.13)

Remark 2.1.2. It is easy to see that β(ω) = 1 for any constant besides 1/4. The particular choice

1/4 is made to ensure that β′(ω) = 0, which is necessary to keep β ≤ 1 in a neighborhood of ω. We

explore other possibilities in Section 2.1.3.

From this lemma we can derive some results for the operator S. To do this we first quantify

the non-resonance condition. We let

δj =
λj − ω
ω

,

be the relative size of the gap between λj and the Helmholtz frequency, and then denote the smallest

gap (in magnitude) by δ,

δ = δj∗ , j∗ = argminj |δj |.
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Then we have

Lemma 2.1.2. Suppose δ > 0. The spectral radius ρ of S is strictly less than one, and for small

δ,

ρ = 1− b1δ2 +O(δ3), (2.14)

with b1 as in Lemma 2.1.1. Moreover, S is a bounded linear map from L2(Ω) to H1(Ω).

Proof. From Lemma 2.1.1 we get

ρ = sup
j
|β(λj)| ≤ sup

j
max

(
1− 1

2
δ2
j ,

1

2

)
≤ max

(
1− 1

2
δ2,

1

2

)
< 1.

For the more precise estimate when δ is small we will use (2.13). Since 1 > ρ ≥ β(ω + ωδ)→ 1 as

δ → 0, we can assume that ρ > 1 − η2/2, with η := b1/2||R||∞, for small enough δ. Then, since

|β(ω + ωδj)| ≤ 1− η2/2 for |δj | > η by Lemma 2.1.1, we have

ρ = sup
|δj |≤η

β(ω + ωδj) = β(ω + ωδk∗),

for some k∗ with |δk∗ | ≤ η. If δk∗ = δj∗ (where δ = |δj∗ |) then (2.13) gives (2.14). If not, we have

η ≥ |δk∗ | ≥ δ and by Lemma 2.1.1

0 ≤ β(ω+ωδk∗)−β(ω+ωδj∗) = −b1(δ2
k∗−δ2)+R(δk∗)δ

3
k∗−R(δj∗)δ

3
j∗ ≤ −b1(δ2

k∗−δ2)+
b1
2

(δ2
k∗+δ2),

which implies that δ2
k∗ ≤ 3δ2 and that

0 ≤ b1(δ2
k∗ − δ2) ≤ R(δk∗)δ

3
k∗ −R(δj∗)δ

3
j∗ ≤ ||R||∞(1 + 3

√
3)δ3.

Therefore,

ρ = 1−b1δ2
k∗+O(δ3

k∗) = 1−b1δ2 +b1(δ2−δ2
k∗)+O(δ3

k∗) = 1−b1δ2 +O(δ3
k∗+δ3) = 1−b1δ2 +O(δ3).

This shows (2.14). For the second statement, we note first that by Lemma 2.1.1,

|λjβ(λj)| ≤ ω


1, λj ≤ ω,

b0λj
λj−ω , λj > ω,

= ω


1, λj ≤ ω,

b0(1 + 1/δj), λj > ω,

≤ ωmin(1, b0(1 + 1/|δ|)) =: D.
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Suppose now that g ∈ L2(Ω) and

g(x) =

∞∑
j=0

ĝjφj(x).

Then

||Sg||2H1(Ω) ≤
∞∑
j=0

|β(λj)|2|ĝj |2 +
∞∑
j=0

λ2
j

c2
min

|β(λj)|2|ĝj |2 ≤
(

1 +
D2

c2
min

) ∞∑
j=0

|ĝj |2

=

(
1 +

D2

c2
min

)
||g||2L2(Ω).

This proves the lemma.

Letting en := u− vn we can rearrange (2.12) and obtain

en+1 = Sen ⇒ ||en+1||L2(Ω) ≤ ρ||en||L2(Ω) ⇒ ||en||L2(Ω) ≤ ρn||e0||L2(Ω) → 0,

which shows that vn converges to u in L2. By Lemma 2.1.2 all iterates vn ∈ H1(Ω) since v0 = 0.

We can therefore also get convergence in H1. Let

en(x) =

∞∑
j=0

ênj φj(x),

and consider similarly

∞∑
j=0

|ên+1
j |2λ2

j =

∞∑
j=0

β(λj)
2|ênj |2λ2

j ≤ ρ2
∞∑
j=0

|ênj |2λ2
j ⇒

||∇en||2L2(Ω) ≤
1

c2
min

∞∑
j=0

|ênj |2λ2
j ≤

ρ2n

c2
min

∞∑
j=0

|ê0
j |2λ2

j ≤ ρ2n c
2
max

c2
min

||∇e0||2L2(Ω) → 0.

We conclude that the iteration converges in H1 with convergence rate ρ. By Lemma 2.1.1 we have

ρ ∼ 1 − 6.33δ2 and, not surprisingly, the smallest gap, δ, determines the convergence factor. We

have thus showed

Theorem 2.1.3. The iteration in (2.8) and (2.9) converges in H1(Ω) for the Dirichlet and Neu-

mann problems away from resonances to the solution of the Helmholtz equation (2.2). The conver-

gence rate is 1−O(δ2), where δ is the minimum gap between ω and the eigenvalues of −∇·(c2(x)∇).
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As discussed in the introduction, the dependence of the convergence rate on ω is often of

interest. For the energy conserving case, however, this question is ambiguous as the problem is not

well-defined for all ω. As soon as ω = λj there are either no or an infinite number of solutions.

In higher dimensions, the eigenvalues λj get denser as j increases, meaning that in general the

problem will be closer and closer to resonance as ω grows. Therefore, solving the interior undamped

Helmholtz equation for high frequencies, with pure Dirichlet or Neumann boundary conditions, may

not be of great practical interest.

Nevertheless, we can make the following analysis. By the work of Weyl [109] we know that

the eigenvalues grow asymptotically as λj ∼ j1/d in d dimensions. The average minimum gap δ

when ω ≈ λj is then

δ ≈ 1

λj+1 − λj

∫ λj+1

λj

min(λ− λj , λj+1 − λ)

ω
dλ =

λj+1 − λj
4ω

∼ (j + 1)1/d − j1/d

ω
≈ j1/d−1

dω

∼ ω1−d

ω

∼ ω−d.

When the convergence rate is 1 − O(δ2), the number iterations to achieve a fixed accuracy grows

as O(1/δ2). This shows that the number of iterations would grow at the unacceptable rate ω2d for

the iteration.

Fortunately, one can accelerate the convergence by using the conjugate gradient method in

the energy conserving case and with any other Krylov method in the general case. The linear

system that we actually want to solve is

(I − S)v =: Av = b := Π0.

Moreover, with b = Π0 pre-computed we can easily evaluate the action of A at the cost of a single

wave solve. Precisely, since Av = v −Πv + b we simply carry out the evaluation of Av by evolving

the wave equation for one period in time with v as the initial data and then subtract the filtered

solution from the sum of the initial data and the right hand side b.

The operator A is self adjoint and positive, since −1/2 < β(λj) < 1, which implies that the
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eigenvalues of A lie in the interval (0, 3/2). The condition number of A is of the same order as

1 − ρ, where ρ is the spectral radius of S, i.e. by the simple analysis above, cond(A) ∼ ω2d. If

this system is solved using the (unconditioned) conjugate gradient method the convergence rate

is 1− 1/
√

cond(A) ∼ 1− 1/ωd, [25]. Thus, then the method just requires ∼ ωd iterations for fixed

accuracy.

Remark 2.1.3. The operator A is self-adjoint and coercive when δ > 0 since

〈Au, u〉 = 〈(I − S)u, u〉 =
∞∑
j=0

(1− β(λj))|ûj |2 ≥ (1− ρ)||u||2.

This should be contrasted with the original indefinite Helmholtz problem, which is not coercive. In

fact, the eigenvalues satisfy the simple relation λWHI = 1 − β(λHelmholtz + ω) ¿ 0. The two for-

mulations are however mathematically equivalent for the interior Dirichlet and Neumann problems

away from resonances, as the analysis above shows.

The coercivity also implies that the solution to (2.5) for the simplified iteration is unique

since w = Πw is equivalent to A(w − u) = 0.

Remark 2.1.4. A discretization would have approximately a fixed number of grid points per wave-

length, leading to a (sparse) matrix of size N ×N with N ∼ ωd. Hence, the number of iterations

for WHI would be O(N2) and the total cost O(N3) since each iteration costs O(N). This should be

compared with a direct solution method which is better than O(N3) when the matrix is sparse.

Remark 2.1.5. In the Krylov accelerated case this analysis suggests that the number of iterations

would now be O(N) and the total cost O(N2). However, in the experiments below we observe slightly

better complexity for interior problems and significantly better complexity for open problems. In fact,

for the open problems we find that, in both two and three dimensions, the number of iterations scale

as ∼ ω which is the required number of iterations for the information to travel through the domain.

2.1.2 Analysis of the Discrete Iteration

To better understand the effects of discretizations we consider the following discrete version

of the algorithm for the energy conserving case described above in Section 2.1.1. We introduce the
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temporal grid points tn = n∆t and a spatial grid with N points together with the vector wn ∈ RN

containing the grid function values of the approximation at t = tn. We also let f ∈ RN hold the

corresponding values of the right hand side. The discretization of the continuous spatial operator

−∇ · (c2(x)∇), including the boundary conditions, is denoted Lh and it can be represented as an

N ×N matrix. The values −∇ · (c2(x)∇w) are then approximated by Lhw
n. As in the continuous

case, we assume Lh has the eigenmodes (λ2
j , φj), such that Lhφj = λ2

jφj for j = 1, . . . , N , where all

λj are strictly positive and ordered as 0 ≤ λ1 ≤ . . . ≤ λN .

We let the Helmholtz solution u be given

−Lhu+ ω2u = f.

The numerical approximation of the iteration operator is denoted Πh, and it is implemented as

follows. Given v ∈ RN , we use the leap frog method to solve the wave equation as

wn+1 = 2wn − wn−1 −∆t2Lhw
n −∆t2f cos(ωtn), (2.15)

with time step ∆t = T/M for some integer M , and initial data

w0 = v, w−1 = v − ∆t2

2
(Lhv + f).

The trapezoidal rule is then used to compute Πhv,

Πhv =
2∆t

T

M∑
n=0

ηn

(
cos(ωtn)− 1

4

)
wn, ηn =


1
2 , n = 0 or n = M,

1, 0 < n < M.

(2.16)

With these definitions we can prove

Theorem 2.1.4. Suppose there are no resonances, such that δh = minj |λj −ω|/ω > 0. Moreover,

assume that ∆t satisfies the stability and accuracy requirements

∆t <
2

λN + 2ω/π
, ∆tω ≤ min(δh, 1). (2.17)

Then the fixed point iteration v(k+1) = Πhv
(k) with v(0) = 0 converges to v∞ which is a solution to

the discretized Helmholtz equation with the modified frequency ω̃,

−Lhv∞ + ω̃2v∞ = f, ω̃ = 2 sin(∆tω/2)/∆t.
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The convergence rate is at least ρh = max(1− 0.3δ2
h, 0.6).

Proof. We expand all functions in eigenmodes of Lh,

wn =
N∑
j=1

ŵnj φj , f =
N∑
j=1

f̂jφj , u =
N∑
j=1

ûjφj , v =
N∑
j=1

v̂jφj , v∞ =
N∑
j=1

v̂∞j φj .

Then the Helmholtz eigenmodes of u and v∞ satisfy

ûj =
f̂j

ω2 − λ2
j

, v̂∞j =
f̂j

ω̃2 − λ2
j

.

We note that ω̃ is not resonant and v̂∞j is well-defined for all j, since by (5) and (3.25)

|ω̃ − λj | ≥ |ω − λj | − |ω̃ − ω| ≥ ωδh −
∆t2ω3

24
≥ ω

(
δh −

1

24
min(δh, 1)2

)
> 0.

The wave solution eigenmodes are given by the difference equation

ŵn+1
j − 2ŵnj + ŵn−1

j + ∆t2λ2
j ŵ

n
j = −∆t2f̂j cos(ωtn). (2.18)

with initial data

ŵ0
j = v̂j , ŵ−1

j = v̂j

(
1− 1

2
∆t2λ2

j

)
− 1

2
∆t2f̂j .

By (3.25)

|2−∆t2λ2
j | < 2,

and the characteristic polynomial for the equation, r2 + (∆t2λ2
j − 2)r + 1, then has two roots on

the boundary of the unit circle. The solution is therefore stable and is given by (the verification

of which is found in Appendix .2)

ŵnj = (v̂j − v̂∞j ) cos(λ̃jtn) + v̂∞j cos(ωtn), (2.19)

where λ̃j is well-defined by the relation

2
sin(∆tλ̃j/2)

∆t
= λj .

Now, let

Πhv =

∞∑
j=1

v̄jφj .



21

Then the numerical integration gives

v̄j =
2∆t

T

M∑
n=0

ηn

(
cos(ωtn)− 1

4

)(
(v̂j − v̂∞j ) cos(λ̃jtn) + v̂∞j cos(ωtn)

)
= (v̂j − v̂∞j )βh(λ̃j) + v̂∞j βh(ω) = v̂jβh(λ̃j) + (1− βh(λ̃j))v̂

∞
j ,

where

βh(λ) =
2∆t

T

M∑
n=0

ηn cos(λtn)

(
cos(ωtn)− 1

4

)
,

and we used the fact that the trapezoidal rule is exact, and equal to one, when λ = ω. (Recall

that for periodic functions the trapezoidal rule is exact for all pure trigonometric functions of order

less than the number of grid points.) Hence, if |βh(λ̃j)| < 1 the j-th mode in the fixed point

iteration converges to v̂∞j . This is ensured by the following lemma, the proof of which is found in

Appendix .3.

Lemma 2.1.5. Under the assumptions of Theorem 2.1.4,

max
1≤j≤N

|βh(λ̃j)| ≤ ρh =: max(1− 0.3δ2
h, 0.63). (2.20)

Since the bound |βh(λ̃j)| ≤ ρh < 1 in the lemma is uniform for all j the convergence v(k) → v∞

with rate at least ρh follows. This concludes the proof of the theorem.

Remark 2.1.6. The discretization above is used as an example to illustrate the impact of going from

the continuous to the discrete iteration. For a particular discretization we can improve the iteration

further by using the knowledge of how it approximates ω and the eigenvalues of the continuous

operator. Indeed, for the discretization above, let us define ω̄ by the relation

ω = 2
sin(∆tω̄/2)

∆t
.

Then if we use f cos(ω̄tn) instead of f cos(ωtn) in the time stepping (2.15), the limit will be pre-

cisely the Helmholtz solution, v∞ = u. Furthermore, the condition ∆tω ≤ min(δh, 1) can be quite

restrictive for problems close to resonance. It is only important to ensure convergence of the itera-

tions. Another way to do that is to slightly change the discrete filter by replacing the constant 1/4
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in (3.24) by a ∆t-dependent number such that |βh(λ)| < 1 for λ 6= ω. Another option is to use a

higher order quadrature rule, which would mitigate the restriction on ∆t.

2.1.3 Tunable Filters

In Lemma 2.1.1 we saw that the filter transfer function satisfies β(ω) = 1 and−1/2 < β(r) < 1

when r 6= ω and that these conditions guaranteed convergence of the WaveHoltz iteration. To

improve convergence when r ≈ ω we now consider a more general filter transfer function

β̄(λ) =
2

T

∫ T

0
(cos(ωt) + α(t)) cos(λt) dt, α(t) = a0 +

∞∑
n=1

an sin(nωt), (2.21)

where we refer to α(t) as a time-dependent shift. . As before , necessary conditions for convergence

are β̄(ω) = 1, β̄′(ω) = 0. Straightforward calculations reveal that these conditions require that the

two first coefficients must satisfy

a1 =
1

2π
(1 + 4a0).

The remaining terms in the sum are orthogonal to cos(λt) when λ = ω. Carrying out the integration

in full for each term yields the general form

β̄(λ) =
λω sin(λT )

π(λ2 − ω2)
+ a0

ω sin(λT )

πλ
+

∞∑
n=1

an
nω2

π(λ2 − n2ω2)
(cos(λT )− 1) ,

from which it follows that another necessary condition is |a0| < 1/2 since |β̄(r)| < 1 and

β̄(0) = a0 lim
λ→0

ω sin(2πλ/ω)

πλ
= 2a0.

We note that the standard filter, where a0 = −1/4 and a1 = 0, satisfies the necessary conditions.

Remark 2.1.7. For the remaining coefficients an we only need to ensure that |β̄(r)| < 1 which

leaves large freedom to design β̄. For example we may try to maximize |β̄′′(ω)| (minimize β̄′′(ω))

so that β̄(r) is sharply peaked around r = ω. We do not pursue a systematic study of this here but

illustrate the utility of the added flexibility of (2.21) with numerical experiments below in Section 2.3.
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2.1.4 Multiple Frequencies in One Solve

We can use the WaveHoltz algorithm to solve for multiple frequencies at once. Suppose we

look for the solutions ui of

∇ · (c2(x)∇ui) + ω2
i ui = fi(x), i = 1, . . . , N,

with the same c and boundary condition for all i. To find those solutions we include all frequencies

in the wave equation part of the iteration (2.4), and solve

wtt = ∇ · (c(x)2∇w)−
N∑
i=1

fi(x) cos(ωit). (2.22)

We then seek a decomposition

w(x, t) ≡
N∑
i=1

ui(x) cos(ωit), (2.23)

of the solution. The filtering part of the WaveHoltz iteration is also updated to reflect the multiple

frequencies

vn+1 =
2

T

∫ T

0

(
N∑
i=1

cos(ωit)−
1

4

)
w(x, t) dt.

As before we take v0 = 0 when we deal with energy conserving boundary conditions. To this end

we assume that the frequencies are related by an integer multiple in a way so that the period T

can be chosen based on the lowest frequency.

The different ui(x) in (2.23) can be found as follows. Once we have found the time periodic

solution to (2.22) evolve one more period and sample w(x, t) at N distinct times tj , j = 1, . . . , N .

We then have

ui(x) =

N∑
j=1

βijw(x, tj),

where the coefficients βij are the elements of A−1 with the elements of A being aij = cos(ωjti).

2.1.5 WaveHoltz Iteration for Impedance Boundary Conditions

For impedance and other boundary conditions that leads to a decreasing energy for the wave

equation we cannot make the simplifying assumption in (2.4) that wt(0, x) = 0 but we must seek
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both v0(x) and v1(x) in (2.4). To do so we define an extended iteration (2.8) where we apply Π to

both the displacement and the velocity: v

v′


(n+1)

= Π̃

 v

v′


(n)

,

 v

v′


(0)

≡ 0, (2.24)

where

Π̃

 v

v′

 =
2

T

∫ T

0

(
cos(ωt)− 1

4

) w(t, x)

wt(t, x)

 dt, T =
2π

ω
. (2.25)

Here w(t, x) and its time derivative wt(t, x) satisfies the wave equation (2.4) with initial data

v0(x) ≡ v(n) and v1(x) ≡ v′(n).

2.2 Wave Equation Solvers

In this section we briefly outline the numerical methods we use in the experimental section

below. We consider both discontinuous Galerkin finite element solvers and finite difference solvers.

In all the experiments we always use the trapezoidal rule to compute the integral in the WaveHoltz

iteration.

2.2.1 The Energy Based Discontinuous Galerkin Method

Our spatial discretization is a direct application of the formulation described for general

second order wave equations in [9, 10]. Here we outline the spatial discretization for the special

case of the scalar wave equation in one dimension and refer the reader to [9] for the general case.

The energy of the scalar wave equation is

H(t) =

∫
D

v2

2
+G(x,wx)dx,

where

G(x,wx) =
c2(x)w2

x

2
,

is the potential energy density, v is the velocity (not to be confused with the iterates vn above)

or the time derivative of the displacement, v = wt. The wave equation, written as a second order



25

equation in space and first order in time then takes the form

wt = v,

vt = −δG−f(x) cos(ωt),

where δG is the variational derivative of the potential energy

δG = −(Gwx)x = −(c2(x)wx)x.

For the continuous problem the change in energy is

dH(t)

dt
=

∫
D
vvt + wt(c

2(x)wx)x dx = −
∫
D
vf(x) cos(ωt)dx+[wt(c

2(x)wx)]∂D, (2.26)

where the last equality follows from integration by parts together with the wave equation. Now,

a variational formulation that mimics the above energy identity can be obtained if the equation

v−wt = 0 is tested with the variational derivative of the potential energy. Let Ωj be an element and

Πs(Ωj) be the space of polynomials of degree s, then the variational formulation on that element

is:

Problem 1. Find vh ∈ Πs(Ωj), w
h ∈ Πr(Ωj) such that for all ψ ∈ Πs(Ωj), φ ∈ Πr(Ωj)∫

Ωj

c2φx

(
∂whx
∂t
− vhx

)
dx = [c2φx · n

(
v∗ − vh

)
]∂Ωj , (2.27)∫

Ωj

ψ
∂vh

∂t
+ c2ψx · whx+ψf(x) cos(ωt) dx = [ψ (c2wx)∗]∂Ωj . (2.28)

Let [[ζ]] and {ζ} denote the jump and average of a quantity ζ at the interface between two

elements, then, choosing the numerical fluxes as

v∗ = {v} − τ1[[c2wx]]

(c2wx)∗ = {c2wx} − τ2[[v]],

will yields a contribution −τ1([[c2wx]])2 − τ2([[v]])2 from each element face. To this end we choose

τi > 0 (so called upwind or Sommerfeld fluxes) which together with the choice that the approxi-

mation spaces be of the same degree r = s result in methods that are r+ 1 order accurate in space
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and measured in the L2 norm. We note that even in the case of energy conserving numerical fluxes

the formulation does not lead to a symmetric matrix for the WaveHoltz iteration (it is of course

positive definite though).

Physical boundary conditions can also be handled by appropriate specification of the numer-

ical fluxes, see [9] for details. The above variational formulation and choice of numerical fluxes

results in an energy identity similar to (2.26). However, as the energy is invariant to certain trans-

formations the variational problem does not fully determine the time derivatives of wh on each

element and independent equations must be introduced. In this case there is one invariant and an

independent equation is
∫

Ωj

(
∂wh

∂t − v
h
)

= 0.

Denoting the degrees of freedom on element Ωj by vj and wj the semi-discretization according

to (2.27)-(2.28) on element Ωj can be written

S(
∂wj
∂t
− vj) = L1(vj−1, vj , vj+1, wj−1, wj , wj+1), (2.29)

M
∂vj
∂t

+ Swj + fj cos(ωt) = L2(vj−1, vj , vj+1, wj−1, wj , wj+1), (2.30)

where the elements of the element matrices M and S are Mkl =
∫

Ωj
φxφldx and

Skl =
∫

Ωj
c2(φk)x(φl)xdx respectively and the lift operators L1 and L2 represents the numerical

fluxes. Note that a convenient way to directly enforce the independent equation is to compute the

time derivatives of wj according to

∂wj
∂t

= vj = S†L1(vj−1, vj , vj+1, wj−1, wj , wj+1),

where S† is the pseudo inverse of S.

2.2.2 Finite Difference Discretizations

For the finite difference examples we exclusively consider Cartesian domains (x, y, z) ∈

[Lx, Rx]× [Ly, Ry]× [Lz, Rz] discretized by uniform grids (xi, yj , zk) = (Lx+ihx, Ly+jhy, Lz+khz),

with i = 0, . . . , nx and hx = (Rx − Lx)/nx, etc.
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When we have impedance boundary conditions on the form wt ± ~n · ∇w = 0 we evolve the

wave equation as a first order system in time according to the semi-discrete approximation

dvijk(t)

dt
= (Dx

+D
x
− +Dy

+D
y
− +Dz

+D
z
−)wijk, (2.31)

dwijk(t)

dt
= vijk, (2.32)

for all grid points that do not correspond to Dirichlet boundary conditions. On boundaries with

impedance conditions we find the ghost point values by enforcing (here illustrated on the top of

the domain)

vijnz −Dz
0wijnz = 0. (2.33)

Here we have used the standard forward, backward and centered finite difference operators, for

example hxD
x
+wi,j,k = wi+1,j,k − wi,j,k etc. For problems with variable coefficients the above dis-

cretization is generalized as in [12].

We note that in some of the examples where we require high order accuracy we use the sum-

mation by parts discretization for variable coefficients developed by Mattson in [86] and described

in detail there.

2.2.3 Time Discretization

In most of the numerical examples we use either an explicit second order accurate centered

discretization of wtt (for finite differences with energy conserving boundary conditions we eliminate

v and time discretize wtt directly as in the analysis in Section 2.1.2) or the classic fourth order

accurate explicit Runge-Kutta method.

For some of the DG discretizations we employ Taylor series time-stepping in order to match

the order of accuracy in space and time. Assuming that all the degrees of freedom have been

assembled into a vector w we can write the semi-discrete method as wt = Qw with Q being a

matrix representing the spatial discretization. Assuming we know the discrete solution at the time
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tn we can advance it to the next time step tn+1 = tn + ∆t by the simple formula

w(tn + ∆t) = w(tn) + ∆twt(tn) +
(∆t)2

2!
wtt(tn) . . .

= w(tn) + ∆tQw(tn) +
(∆t)2

2!
Q2w(tn) . . .

The stability domain of the Taylor series which truncates at time derivative number NT includes

part of the imaginary axis if mod(NT, 4) = 3 or mod(NT, 4) = 0 (see e.g. [72]) . However as we use

a slightly dissipative spatial discretization the spectrum of our discrete operator will be contained

in the stability domain of all sufficiently large choices of NT (i.e. the NT should not be smaller

than the spatial order of approximation). Note also that the stability domain grows linearly with

the number of terms.

2.3 Numerical Examples

In this section we illustrate the properties of the proposed iteration and its Krylov accelerated

version by a sequence of numerical experiments in one, two and three dimensions.

2.3.1 Examples in One Dimension

We begin by presenting some very basic numerical experiments in one dimension.

2.3.1.1 Convergence of Different Iterations / Solvers at a Fixed Frequency

We start by repeating the example described in Section 3.5 in [61]. This example is used in

[61] to illustrate that the original cost functional from [29] (denoted J in [61]) does not yield the

correct solution due to the existence of multiple minimizers.

The example solves the Helmholtz equation with c = 1 and with the exact solution

u(x) = 16x2(x− 1)2, 0 ≤ x ≤ 1.

Here both u (and wt for the time-dependent problem) and ux vanish at the endpoints so any
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boundary condition of the form

αwt + β(~n · wx) = 0, α2 + β2 = 1,

will be satisfied. Dirichlet boundary conditions correspond to α = 1 and Neumann boundary

conditions correspond to α = 0, all other values will be an impedance boundary condition. Here,

as in [61], we take the frequency to be ω = π/4.

We discretize using the energy based DG method discussed above and use upwind fluxes

which adds a small amount of dissipation. For this experiment we use 5 elements with degree q = 7

polynomials and we use an 8th order accurate Taylor series method in time. We set ∆t so that

nt∆t = T = 2π/ω while making the inequality ∆t ≤ CCFL∆x/(q + 1) as sharp as possible (in

this experiment we fix CCFL = 1/2). With this resolution in space and time the truncation errors

are negligible and we expect that the observed convergence properties should match those of the

continuous analysis.

As mentioned above we expect that our method works best when combined with a classical

iterative Krylov subspace method. The energy based DG method will produce a matrix A with

real eigenvalues in (0, 3/2) but it will not yield a symmetric matrix A. We present results for

the WaveHoltz iteration (denoted WHI in figures and tables), and its acceleration with Matlab

implementations of LSQR, QMR, CG and GMRES (we use the default unconditioned settings with

a tolerance of 10−13). In Figure 2.2 we display the convergence histories for various combinations

of boundary conditions.
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Figure 2.2: Convergence of the residual for the plain WaveHoltz iteration and its accelerated versions

using LSQR, QMR, CG and GMRES. The titles of the figures indicate the boundary conditions

used to the left and right, e.g. D-N means Dirichlet on the left and Neumann on the right.

The residuals for the Krylov accelerated iterations are the ones returned by the Matlab functions

and the residual for the WaveHoltz iteration is simply the L2 norm of the difference between

two subsequent iterations. As can be seen the convergence behavior for QMR and GMRES are

uniformly the fastest and appears to be insensitive to the type of boundary condition used. Note

that the numerical method used here does not yield a symmetric matrix and CG is not guaranteed

to work. Evidence of this loss or stagnation of convergence can be found in the cases D-D and D-N

in Figure 2.2.

The actual errors in the converged solutions can be found in Table 2.1, where it can be seen

that the error for all of the iteration methods are close to the residual tolerance.

Method / b. c. WHI LSQR QMR CG GMRES

D-D 94.5(-15) 76.1(-15) 75.9(-15) 151.5(-15) 97.9(-15)
N-N 49.2(-15) 142.8(-15) 144.4(-15) 158.5(-15) 144.1(-15)
D-N 28.3(-15) 55.4(-15) 81.9(-15) 272.3(-15) 67.0(-15)

Table 2.1: Maximum error for various combinations of boundary conditions and methods.
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2.3.1.2 Convergence with Increasing Frequency

To study how the number of iterations scale with the Helmholtz frequency ω we solve the

wave equation on the domain x ∈ [−6, 6] with constant wave speed c2(x) = 1 and with a forcing

f(x) = ω2e−(ωx)2 ,

that results in the solution being O(1) for all ω. The solver is the same as in the previous example.

We keep the number of degrees of freedom per wave length fixed by letting the number of elements

be 5dωe. We always take the polynomial degree to be 7 and the number of Taylor series terms in

the timestepping to be 8. As we now also consider impedance boundary conditions, with α = 1/2,

we use WHI accelerated by GMRES.

We report the number of iterations it takes to reach a GMRES residual smaller than 10−10

for the six possible combinations of Dirichlet, Neumann and impedance boundary conditions for 50

frequencies distributed evenly between 1 and 100. The results are displayed to the left in Figure

2.3 where we plot the number of iterations divided by ω as a function of ω.
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Figure 2.3: Left: Number of iterations divided by ω as a function of ω for different boundary

conditions. Middle and right: Zoom in around a resonance for the Dirichlet problem when using

Krylov acceleration (middle) and when using WHI (right).

It is clear that the asymptotic scaling is linear with growing frequency. Interestingly all the com-

binations of boundary conditions collapse to two different curves with the Dirichlet-Dirichlet and

impedance-impedance conditions converging the fastest.
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We know from the analysis in Section 2.1.1 that the rate of convergence of the WaveHoltz

iteration deteriorates near resonant frequencies (for non-impedance problems) but from Figure

2.3 it appears that all frequencies converge more or less the same rate. To study the behavior

of the accelerated algorithm for homogenous Dirichlet boundary conditions we zoom in around

ω ≈ 19.114 where the continuous problem has a resonance. In the middle graph in Figure 2.3 we

display the required number of iterations around the resonant frequency. As can be seen there

is some deterioration but only in very narrow band around a frequency that is slightly less than

19.114 and probably is the modified resonant frequency discussed in Section 2.1.2. This behavior

can be contrasted to the growth of the number of iterations for the WaveHoltz iteration without

GMRES acceleration, see the right figure in Figure 2.3. Clearly the acceleration of the WaveHoltz

iteration by GMRES improves the robustness of the method near resonances.

2.3.1.3 Multiple Frequencies in One Solve

Here we illustrate the technique described in Section 2.1.4 for finding solutions of multiple

frequencies at once. We set ω = 1 and ωj = 2j−1ω for j = 1, . . . , 4, and consider the domain

x ∈ [0, 1]. We use the finite difference discretization discussed in Section 2.2.2 with Dirichlet

boundary conditions . The time evolution is done by a second order centered discretization of wtt,

as was done in the discrete analysis in Section 2.1.2 . The problem is forced by a point source

centered at x = 1/2 for j = 1, . . . , 4, and we consider a constant wave speed c2(x) = 1 . We

display the convergence with decreasing h in Figure 2.4 on the right, where it can be seen that

each solution uj converges at a rate of h2.
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Figure 2.4: Left: Convergence history of the near resonant frequency 4.1π for the WaveHoltz filter

and a tunable filter, and that of the frequency 1.5π for reference. Middle: The error between

successive WaveHoltz iterates with the usual WaveHoltz filter. Right: Convergence of the solution

for the CG accelerated WaveHoltz iteration with a point forcing.

2.3.1.4 Tunable Filters

Here we consider solving a Helmholtz problem in the domain x ∈ [0, 1] with Dirichlet bound-

ary conditions and constant wave speed c2 = 1. The discretization is the same as in the previous

experiment and we use a point source centered at x = 1/2. A straightforward calculation shows

that the resonant frequencies of the problem are integer multiples of π and we specifically consider

solving the Helmholtz problem with frequency ω = 4.1π, which has a minimum relative gap to

resonance of δ = 1/41 ≈ 0.024. As discussed previously, we expect that the convergence rate of

the WaveHoltz iteration will stagnate since ω is close to resonance. We compare the convergence

against the problem with frequency ω = 1.5π which has a minimum relative gap to resonance of

δ = 1/3. The iteration history is displayed in Figure 2.4 on the left . It can be seen that the usual

WaveHoltz iteration converges rapidly for the frequency 1.5π but that of 4.1π stagnates consider-

ably. In the middle of Figure 2.4 we display the difference between successive WaveHoltz iterates

for the Helmholtz problem with frequency ω, from which it is clear that the residual is a scaling

of the resonant mode sin(4πx).

To improve the rate of convergence close to resonance we leverage a tunable filter as mentioned

in Section 2.1.3. To obtain this filter, we consider the filter transfer function (2.21) and truncate
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the sin expansion of the time-dependent shift α(t) to 12 terms such that an = 0 for n > 11. In this

example we take the usual choice of a0 = −1/4 for the constant term in the filter transfer function

(2.21) which, as discussed in Section 2.1.3, requires a1 = 0. We then perform a minimization over

a discrete set of 3000 equispaced points rj ∈ [0, 16π] of the empirically constructed functional

J(a2, a3, . . . , a11) = 10.6β̄′′(ω) + 0.1
∑

|rj−ω|>0.1

|β̄(rj)|20, (2.34)

via 100 steepest descent iterations. The first term in the functional (2.34) minimizes the second

derivative at the peak ω = 4.1π, while the second weakly enforces that |β(r)| ≤ 1 for all r > 0 to

ensure convergence of the fixed point iteration.

In Figure 2.5 on the right we see that the updated filter is steeper near ω = 4.1π so

that repeated application of the updated filter will more quickly remove the resonant mode with

frequency 4π and we thus expect faster convergence.
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Figure 2.5: (Left) The usual WaveHoltz filter (in blue) and updated tunable filter (in red). (Right)

Closeup of both the usual WaveHoltz filter and the updated tunable filter near the resonant fre-

quency 4π.

This is confirmed in the resulting iteration history of the updated filter, shown in Figure 2.4 on the

left . The cost of improving convergence behavior near resonance, however, is a larger value of β̄

for many other modes as shown in Figure 2.5 on the left. A more careful investigation of optimized

filters is left for the future.
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2.3.2 Problems in Two Dimensions

In this section we present experiments in two space dimensions.

2.3.2.1 Convergence in Different Geometries

In this example we solve the Helmholtz equation with a constant wave speed, c2 = 1, in the

domain (x, y) ∈ [−1, 1]2 and with forcing

f(x, y) = −ω2e−σ[(x−0.01)2+(y−0.015)2],

where σ = max(36, ω2) . We vary the frequency according to ω = 1/2 + k, k = 1, . . . , 100, and

keep the number of points per wavelength roughly constant by choosing nx = ny = 8dωe. Here we

use the finite difference method outlined in Section 2.2.2 combined with the classic fourth order

Runge-Kutta method in time with a timestep ∆t = hx/c.

For each frequency we solve six different problems consisting of combinations of Dirichlet and

impedance boundary conditions with zero to four open sides and with the two open boundary case

forking into two cases: (1) the open boundaries are opposite each other, or (2) next to each other

forming a corner. In Figure 2.6 we display the real part of the solution for the frequency ω = 77.5

for the six different problems.
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Figure 2.6: Typical solutions computed with the GMRES accelerated WHI at ω = 77.5. The thick

lines indicate Dirichlet boundary conditions.

In this example, the WaveHoltz iteration is accelerated by GMRES without restarts. Given

that the storage requirement for GMRES grows with the number of iterations, it is often beneficial

(especially for high frequency problems) to integrate and average over several periods to allow

further propagation of information within the domain while mitigating the rapid growth of the

Krylov subspace. For this example we thus choose to perform the WaveHoltz iteration with an

integration time of 10 periods (i.e. we choose T = 102π
ω ). In Figure 2.7 we report the number of

iterations needed to reduce the relative residual below 10−7.
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Figure 2.7: To the left: number of iterations as a function of frequency to reduce the relative

residual below 10−7 for problems with no trapped waves. Middle: the same but for problems with

trapped waves and for the interior problem. Both are with the GMRES accelerated WHI . To the

right: Residuals for the GMRES accelerated WHI , the CG accelerated WHI and for GMRES

solution of the directly discretized Helmholtz problem.

It is clear from the results that the geometries where the waves can get trapped are considerably

more difficult and require more iterations. The computational results appear to indicate that the

number of iterations to reach the tolerance scale as ω1.89 for the inner Dirichlet problem and as

ω1.6 for the waveguide and the case with three Dirichlet boundary conditions. On the other hand

for geometries with no trapped waves we see faster convergence (see the left figure in Figure 2.7)

with the number of iterations scaling roughly as ω9/10.

To the right in Figure 2.7 we display the residual as a function of the number of right hand

side evaluations (for the wave equation this is equivalent to taking a timestep and for the direct

discretization of Helmholtz this is equivalent to one application of the sparse system matrix, the cost

of these are roughly equivalent) when ω = 51.5 for the pure Dirichlet boundary condition problem.

The three different results are for: 1. the WaveHoltz acceleration, 2. the WaveHoltz iteration

accelerated with conjugate gradient and based on the same spatial discretization but with a second

order accurate centered discretization of wtt using ∆t = 0.7hx and, 3. a direct discretization of

the Helmholtz equation (using the spatial discretization described in Section 2.2.2) combined with

GMRES for solving the resulting system of equations. Precisely we use GMRES with restart every
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100 iterations. For space reasons we only display this for one frequency but note that although the

results may differ a bit between frequencies the trend is similar in the problems we have investigated.

It is clear from the residuals that both the GMRES and conjugate gradient accelerated

WaveHoltz iterations are radically faster than applying GMRES to the direct discretization of

Helmholtz. As all the methods use the same spatial discretization this is an indication of the

importance of changing the problem from an indefinite system of equations to a positive definite

and to a symmetric positive definite system.

Remark 2.3.1. We note that the problems considered in this experiment can be naturally solved

with integral equation techniques since the the wave speed is constant. In addition as the problem is

posed in two dimensions and can be stored in memory a good sparse solver will also be a very good

alternative. What we want to demonstrate is: 1. The positive definiteness of the accelerated WHI

makes it faster than standard iterative techniques for the direct discretization of Helmholtz, 2. The

complexity is different for open and closed problems as predicted by the theory in [42].

Remark 2.3.2. The middle plot of Figure 2.7 shown here is an updated plot of the published version

found in Figure 4.6 of [14]. We note that the original plot in [14] was computed with a GMRES

implementation that was sensitive to loss of orthogonality in the Arnoldi process, and here we use

a more robust routine for computing the orthonormal basis of the Krylov subspace.

2.3.2.2 Smoothly Varying Wave Speed in an Open Domain

In this example we consider a smoothly varying medium in a box (x, y) ∈ [−1, 1]2. The wave

speed is

c2(x, y) = 1− 0.4e
−
(
x2+y2

0.252

)4

,

and is also depicted in Figure 2.8.
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Figure 2.8: Left: the speed of sound (squared) used in example 2.3.2.2. Red indicates a rigid wall

and black indicates open walls. Middle: Number of iterations as a function of frequency. Right:

Compute time normalized by the frequency times the number of degrees of freedom.

Here we use the energy based DG solver and impose a right going plane wave eiω(t−x) through

impedance boundary conditions on the left, bottom and top faces of the domain. On the right

boundary we impose a zero Dirichlet condition. In all the computations we use degree 5 polynomials

and a 6th order Taylor series method. The elements used form a Cartesian structured grid and

we scale the number of elements so that we have 8 degrees of freedom per wavelength. The WHI

is applied with an integration time of 5 periods and is accelerated by GMRES with a termination

tolerance 10−7 on the relative residual.

We solve the Helmholtz problem with ω = kπ, k = 3, 4, . . . , 100 and measure the total time

from start to time of solution and we also measure the number of iterations needed to converge.

The results, displayed in Figure 2.8, again show that for this type of open problem the iteration

appears to require Niter ∼ O(ω0.9) iterations to converge to a fixed tolerance. In terms of total

computational time we observe TTotal ∼ O(ωNDOF) which is slightly higher than what would be

expected from the O(ω0.9) behavior.

However, as the distance traveled by the wave solution is proportional to cT = 2πc/ω and

the information must travel through the domain at least once the time to solution is as good as

can be expected. To reduce the computational complexity further we would need to propagate the

solution faster than the speed of sound by applying a preconditioner or some type of multi-level
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strategy. Although we believe this is possible we leave such attempts to future work.

The magnitude of the solutions with ω = 25π, 50π and 100π are plotted in Figure 2.9.

Figure 2.9: The magnitude of the Helmholtz solution for, from left to right, ω = 25π, 50π and 100π.

2.3.2.3 Convergence of the Approximation Error and the Residual

As our iteration leads to a linear system of equations (and consequently a different residual)

we should check that the residual is still a suitable proxy for the discretization error. Although

we have no reason to believe this would not be the case we note that we have not yet performed

a detailed analysis and resort to checking this numerically. We consider the same computational

domain and method as above but with speed of sound c = 1 and with zero Dirichlet boundary

conditions. We set ω = 2 and choose the forcing so that the solution is

u = −(x2 − 1)2(y2 − 1)2,

and compute the solution using polynomials of degree three in the energy DG method and a fourth

order accurate Taylor time stepper. In Figure 2.10 we display the maximum errors in u and the

residuals for each GMRES iteration for Cartesian grids with grid spacings 1/2, 1/4, 1/8 and 1/16.
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Figure 2.10: The maximum error GMRES residuals as a function of number of iterations for four

different mesh sizes. The rates of convergence agree with the order of the method.

As can be seen the residuals and the errors track well until the errors saturate. To the right in

the figure we also indicate the rates of convergence based on the subsequent grid refinements. As

expected they are very close to four.

2.3.2.4 The Marmousi2 Model

In the last two examples in this section we use the sixth order summation-by-parts finite

difference operators developed by Mattson in [86]. Here we use the classic fourth order Runge-

Kutta method for timestepping. In this example we simulate the solution caused by a point source

placed in a material model where the speed of sound is taken from P-wave velocity in the Marmousi2

model1 . We discretize the full model which consists of 13601×2801 grid points and covers a domain

that is roughly 17× 3.5 kilometers. On the top surface we prescribe a zero Dirichlet condition and

on the remaining three sides we add a 50 grid point wide supergrid layer (see [8]) that is terminated

by zero Dirichlet boundary conditions. We accelerate the WHI by the transpose free quasi minimal

residual (TFQMR) method and terminate the iteration when the relative residual is below 10−5.

We perform each iteration over 8 periods and take 500 timesteps per iteration. The time periodic

point forcing is applied near the surface in grid point (6750, 2600) and we perform computations

1 http://www.agl.uh.edu/downloads/downloads.htm
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with ω = 200, 400 and 800.

As the number of unknowns is relatively large, ∼ 76 · 106, we parallelize the finite difference

solver by a straightforward domain decomposition with the communication handled by MPI. The

simulations were carried out on Maneframe II at the Center for Scientific Computation at Southern

Methodist University using 60 dual Intel Xeon E5-2695v4 2.1 GHz 18-core Broadwell processors

with 45 MB of cache each and 256 GB of DDR4-2400 memory. The results displayed in Figure

2.11 and 2.12 illustrate the ability of the method to find solutions to large problems and at high

frequencies.
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Figure 2.11: Displayed is the base 10 logarithm of the magnitude of the Helmholtz solution

(log10 |u|) caused by a point source near the surface. The results are, from top to bottom, for

ω = 800, 400 and 200.
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Figure 2.12: Zoom in of the base 10 logarithm of the magnitude of the Helmholtz solution (log10 |u|)

caused by a point source near the surface. The results are, from left to right, for ω = 800, 400 and

200.

2.3.2.5 Multiple Frequencies

In this final example in two dimensions we again use the sixth order accurate summation-

by-parts discretization from [86] with homogenous Dirichlet boundary conditions on the domain

(x, y) ∈ [−1, 1]2. The spatial discretization size is the same in both coordinates and is taken to be

2/300. The velocity model is taken to be smoothly varying. Precisely we have that

c2(x, y) = 1− 0.9

e−( (x2+(y−0.4)2−0.42)

0.22

)4

+ e
−
(

(x2+(y+0.4)2−0.32)

0.22

)4
 ,

see also Figure 2.13.
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Figure 2.13: Computation of three Helmholtz problems by one solve. The frequencies are ω = 15, 30

and 60. The material model is also displayed, red is c2 = 1 and dark blue is c2 = 0.1.

We consider three frequencies, ω = 15, 30, 60, and use the same forcing in Helmholtz for all

frequencies,

f(x, y) =
σ

π
e−σ(x2+y2), σ = (4ω)2.

Here we use the WaveHoltz iteration over three periods of the lowest frequency, accelerated by

GMRES (with tolerance 10−8). We time step using a centered second order approximation to wtt

with a timestep ∆t = 1/600. Since we solve for three frequencies at once we adjust the filter as

described in Section 2.1.3 and extract all three solutions at once. Those solutions along with the

material model are displayed in Figure 2.13.

2.3.3 Problems in Three Dimensions

In this section we present experiments in three dimensions.

2.3.3.1 Convergence in Different Geometries

We solve the wave equation in a box (x, y, z) ∈ [−1, 1]3 with the smoothly varying medium

c2(x, y, z) = 1 +
1

10
e−(x2+y2+z2).
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We use a uniform grid (xi, yj , zk) = (−1 + ih,−1 + jh,−1 + kh) with grid spacing h = 1/n and

choose n = max(d10ωe, 20) to keep the resolution fixed. The Helmholtz problem is forced by

F (x, y, z) = ω3e−36ω2((x−x0)2+(y−y0)2+(z−z0)2), (2.35)

where x0 = 1/100, y0 = 3/250, and z0 = 1/200. We impose a mixture of boundary conditions

consisting of homogenous Dirichlet and/or impedance boundary conditions: (1) impedance on all

sides, (2) Dirichlet at z = 1 and impedance on all other sides, (3) Dirichlet at z = −1, y = 1, and

x = 1 with impedance on all other sides, and (4) Dirichlet on all sides. We solve the equations in

first order form in time and use the semi-discrete approximation described in Section 2.2.2.

In this example the WaveHoltz iteration is performed over 5 periods, numerically integrated

in time with the classic Runge Kutta method of order four, and accelerated by TFQMR method.

For the pure Dirichlet problem we also use CG but note that although the spatial discretization

leads to a symmetric WHI matrix when combined with a centered finite difference approximation in

time the matrix is only close to symmetric when combined with the slightly dissipative Runge Kutta

method. The experiments indicate that this slight non-symmetry does not destroy the convergence

iteration of CG in this case.

In Figure 2.14 we report the number of iterations needed to reduce the relative residual below

5 · 10−5.
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Figure 2.14: To the left: number of iterations as a function of frequency to reduce the relative

residual below 5 · 10−5 for problems with no trapped waves. Here WHI is accelerated by TFQMR.

To the right: the same but for the interior problem. Here WHI is accelerated with either CG or

TFQMR.

As was seen before in the 2D case, the fully Dirichlet case is notably more difficult and requires

more iterations than the other problems considered. The computational results indicate that the

number of iterations to reach the tolerance scale as ω2.57 for the inner Dirichlet problem with either

CG or TFQMR, with the former taking fewer overall iterations than the latter. By comparison,

the set of problems with boundary conditions (1)-(3) listed above appear to converge in a number

of iterations that scales as ω0.97, i.e. close to linear in the frequency ω.

2.3.3.2 Scattering from a Plate

For our final example, we again consider the box (x, y, z) ∈ [−1, 1]3 with smoothly varying

medium

c2(x, y, z) =
1

2
[3 + sin(16πz) sin(4π(x+ y))] ,

and impose Dirichlet boundary conditions at z = 1 and impedance boundary conditions on all

other sides. We use a uniform grid (xi, yj , zk) = (−1 + ih,−1 + jh,−1 + kh) with grid spacing

h = 1/n where n is the number of gridpoints along a single dimension. The discretization in space

and in time is exactly as in the previous example and the problem is forced by F (x, y, z) as in

(2.35) with x0 = 1/100, y0 = 3/250, and z0 = 4/5. As in the Marmousi example in the previous
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section, we parallelize the finite difference solver by a straightforward domain decomposition with

the communication handled by MPI. This simulation was carried out on Maneframe II at the Center

for Scientific Computation at Southern Methodist University using 64 dual Intel Xeon E5-2695v4

2.1 GHz 18-core Broadwell processors with 45 MB of cache each and 256 GB of DDR4-2400 memory.

The magnitude of the solution with ω = 200 and ω = 300 is plotted in Figure 2.15.

Figure 2.15: Displayed is the base 10 logarithm of the magnitude of the Helmholtz solution

(log10 |u|) caused by a point source near the surface for ω = 200 (left) and ω = 300 (right) at

the slice x = 0.1.

We use n = 1000 for a total of 109 gridpoints in the first case, and n = 1500 for a total of 3.375 ·109

gridpoints in the second for roughly 15-16 points per wavelength.

2.4 Summary and Future Work

We have presented and analyzed the WaveHoltz iteration, a new iterative method for solving

the Helmholtz equation. The iteration results in positive definite and sometimes symmetric matrices

that are more amenable for iterative solution by Krylov subspace methods. In choosing a Krylov

subspace method we note that CG is the most efficient and memory lean choice when the resulting

system is symmetric positive definite, otherwise GMRES generally outperforms other methods such

as QMR, LSQR, and TFQMR. As the iteration is based on solving the wave equation it naturally

parallelizes and can exploit techniques and spatial discretizations that have been developed for the
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time dependent problem. Numerical experiments indicate that our iteration appears to converge

significantly faster than when the Helmholtz equation is discretized directly and solved iteratively

with GMRES.

We believe that the numerical and theoretical results above are promising and note that

there are many possible avenues for future exploration. For example we have exclusively used

unconditioned Krylov solvers here but the spectral properties of the operator S indicate that

preconditioning should be possible. Further, we have not tried to exploit adaptivity in space or

time or any type of sweeping ideas here and we have only briefly touched on the possibilities for

more advanced filter design. We hope to study both the numerical and theoretical properties of

these in the future.

Finally, here we only analyzed the energy conserving problem. In the following chapter we

will analyze problems with energy loss, via either damping or impedance boundary conditions.



Chapter 3

Analysis of an Iterative Solution of the Helmholtz Equation via the Wave

Equation for Impedance Boundary Conditions

In this chapter, we continue analyzing time-domain methods for the numerical solution of

the Helmholtz equation

∇ · (c2(x)∇u) + ω2u = f(x), x ∈ Ω, (3.1)

for a domain Ω, frequency ω, and sound speed c2(x). The Helmholtz equation (both acoustic

and elastic) is useful for seismic, acoustic, and optics applications. The numerical solution of the

Helmholtz equation is especially difficult due to the resolution requirements and the indefinite

nature of the Helmholtz operator for large frequencies.

In the previous chapter, we introduced a time-domain approach for solving the Helmholtz

equation (3.1). Given the Helmholtz solution, u(x), the time-harmonic wave field Re{u(x)e−iωt}

satisfies the wave equation

wtt = ∇ · (c2(x)∇w)− f(x) cos(ωt), x ∈ Ω, 0 ≤ t ≤ T,

w(0, x) = v0(x), wt(0, x) = v1(x),

where v0 = Re{u(x)} and v1 = ωIm{u(x)}. In Chapter 2, we introduced an integral operator that

time-averaged the wave solution resulting from initial data vn0 , vn1 . The time-averaging generates

new iterates vn+1
0 , vn+1

1 leading to a fixed-point iteration we named the WaveHoltz iteration. The

convergence of the fixed-point iteration for interior problems with Dirichlet/Neumann boundary

conditions (i.e. energy conserving problems) was proven in the continuous and discrete settings.
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For such problems, the WaveHoltz iteration can be reformulated as a symmetric and positive-

definite system which can be accelerated with Krylov subspace methods such as the conjugate

gradient method and GMRES. Numerical experiments using the WaveHoltz iteration indicated

promising scaling with frequency for problems with outflow boundary conditions common in seismic

applications, though no theoretical proof was given for the convergence of the method in that case.

In this chapter, we extend the analysis of the previous chapter to problems with impedance

boundary conditions. In addition, we analyze the WaveHoltz iteration when applied to the damped

Helmholtz equation and prove that the iteration convergences for problems with damping or

impedance conditions. Numerical results verify that for a sufficiently large damping, the num-

ber of iterations for the WaveHoltz iteration to reach convergence for damped Helmholtz equations

is independent of frequency. We thus can guarantee convergence of the method to the Helmholtz

solution via impedance conditions and/or damping.

We also investigate the effect of choice of timestepper used for the WaveHoltz iteration. In

the previous chapter, we noted that in the discrete case the WaveHoltz iteration converged to the

solution of a discrete Helmholtz problem with modified frequency. We provided the modification for

a centered second-order timestepping scheme which would recover the original discrete Helmholtz

solution. Here we consider higher order modified equation (ME) timestepping schemes and show

that the fixed-point of the discrete WaveHoltz iteration converges to the discrete Helmholtz solution

with the order of the timestepper chosen. We additionally show that, as in the case for EM-

WaveHoltz [93], it is possible to completely remove time discretization error from the WaveHoltz

solution through careful analysis of the discrete iteration and updated quadrature formulas.

The efficient solution of the Helmholtz equation (3.1) via iterative methods is incredibly

difficult, especially for high-frequency problems of practical interest, and has been the subject

of much research. We refer to the paper [14] for a more in-depth overview of the literature on

techniques for solving the Helmholtz equation, as well as the review articles [47, 50, 44]. We focus

on the literature that is closely related to the methods and approach used here.

The theoretical justification for working in the time-domain comes from the limiting amplitude
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principle (see [88, 76, 104]) which states that every solution to the wave equation with a time-

harmonic forcing in the exterior of a domain with reflecting boundary conditions tends to the

Helmholtz solution.

Rather than evolving a wave equation forward in time to reach a steady state by appealing

to the limiting amplitude principle, it is possible to cast the problem as a constrained convex least-

squares minimization problem. This approach, originally proposed by Bristeau et al. [29], is the

so-called Controllability Method (CM) which seeks to accelerate the convergence to the steady-state

limit by minimizing the deviation from time-periodicity of the time-domain solution in second-order

form.

In the original CM, along with later work by Heikkola et al. [68, 69], only sound-soft scatterers

were considered as the original cost functional of [29] did not generally yield unique minimizers for

other types of boundary conditions. An alternative functional, J∞, proposed by Bardos and Rauch

in [18], however, did yield uniqueness of the minimizer at the cost of requiring the storage of the

entire history of the computed solution to the wave equation which could be prohibitive for large

problems.

For the wave equation in second-order form, the initial condition lies in H1 × L2, requiring

the solution of a coercive elliptic problem to find a Riesz representative for gradient calculations.

Glowinski and Rossi [58] presented an update to the CM by considering the wave equation in first-

order form, allowing the initial conditions to lie in a reflexive space and thus removing the need for

an elliptic solve each iteration. The discretization chosen in this case, however, had the drawback

of requiring inversion of a mass-matrix at each timestep.

In more recent work by Grote and Tang, [63], the use of an alternative functional (or post-

processing via a compatibility condition) restored uniqueness of the minimizer of CM. In a follow-

up paper, [85], Grote et al. proposed a HDG discretization of the first-order form wave equation

which allowed the scheme to be fully explicit and therefore fully parallel. Moreover, they extend

CM to general boundary conditions for the first-order formulation and additionally proposed a

filtering procedure which allows the original energy functional to be used regardless of the boundary
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condition.

The above work has inspired other time-domain methods outside of CM and WaveHoltz.

Work by Stolk [101] leverages time-domain approaches as a preconditioner for a GMRES acceler-

ated preconditioner for direct Helmholtz discretizations yielding a hybrid time-frequency domain

method. Arnold et al. [15] propose a time-domain method for scattering problems which leverages

the compact support of incident field plane wavelets together with a front-tracking adaptive mesh-

ing algorithm to reduce the cost of computing a Fourier transform of the wave solution to obtain

Helmholtz solutions.

Another important class of methods for solving the Helmholtz equation are the so-called

shifted Laplacian preconditioners. The use of the Laplacian as a preconditioner for Helmholtz

problems emerged with the initial work of Bayliss et al. [20]. In [20], the normal equations of the

discrete Helmholtz equation were iteratively solved using conjugate gradient, with a Symmetric

Successive Over-Relaxation (SSOR) sweep of the discrete Laplacian as a preconditioner. Giles

and Laird then extended the previous preconditioner to instead solve the Helmholtz system with a

flipped sign in front of the Helmholtz term using multigrid [77]. Erlangga, Vuik and Osterlee [46, 43]

further generalized the previous work to use a complex-valued shift of the Laplacian leading to the

shifted Laplacian preconditioner. For a review of the class of shifted Laplacian preconditioners we

refer the reader to the review article by Erlangga [44].

The rest of this chapter is organized as follows. In Section 2 we present analysis for the

general WaveHoltz iteration and prove convergence in the case for impedance boundary conditions.

In Section 3 we present a brief analysis for the case in which damping is present. Section 4 outlines

a discrete analysis of higher order modified equation (ME) schemes, and we additionally present

a method to completely remove time discretization error from the discrete WaveHoltz solution.

Finally, in Section 5 we describe our numerical methods, Section 6 present our numerical examples,

and summarize the chapter in Section 7.



54

3.1 The General Iteration

We consider the Helmholtz equation in a bounded open smooth domain Ω,

∇ · (c2(x)∇u) + ω2u = f(x), x ∈ Ω, (3.2)

with boundary conditions of the type

iαωu+ β(c(x)~n · ∇u) = 0, α2 + β2 = 1, x ∈ ∂Ω. (3.3)

We assume f ∈ L2(Ω) and that c ∈ L∞(Ω) with the bounds 0 < cmin ≤ c(x) ≤ cmax < ∞ a.e. in

Ω. Away from resonances, this ensures that there is a unique weak solution u ∈ H1(Ω) to (3.2).

Due to the boundary conditions u is in general complex-valued.

We first note that the function w(t, x) := Re{u(x) exp(−iωt)} is a T = 2π/ω-periodic (in

time) solution to the real-valued forced scalar wave equation

wtt = ∇ · (c2(x)∇w)− Re{f(x)e−iωt}, x ∈ Ω, 0 ≤ t ≤ T,

w(0, x) = v0(x), wt(0, x) = v1(x),

αwt + β(c(x)~n · ∇w) = 0, x ∈ ∂Ω, (3.4)

where v0 = Re{u} and v1 = ωIm{u}. Based on this observation, our approach is to find this w

instead of u. We could thus look for initial data v0 and v1 such that w is a T -periodic solution

to (3.4). However, there may be several such w, see [63], and we therefore impose the alternative

constraint that a certain time-average of w should equal the initial data. More precisely, we

introduce the following operator acting on the initial data v0 ∈ H1(Ω), v1 ∈ L2(Ω),

Π

 v0

v1

 =
2

T

∫ T

0

(
cos(ωt)− 1

4

) w(t, x)

wt(t, x)

 dt, T =
2π

ω
, (3.5)

where w(t, x) and its time derivative wt(t, x) satisfies the wave equation (3.4) with initial data

v0 and v1. The result of Π[v0, v1]T can thus be seen as a filtering in time of w(·, x) around the
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ω-frequency. By construction, the solution u of Helmholtz now satisfies the system of equations Re{u}

ωIm{u}

 = Π

 Re{u}

ωIm{u}

 .
The WaveHoltz method then amounts to solving this system of equations with the fixed point

iteration  v

v′


(n+1)

= Π

 v

v′


(n)

,

 v

v′


(0)

≡ 0. (3.6)

Provided this iteration converges and the solution to is unique, we obtain the Helmholtz solution

as u = limn→∞ v
n.

3.1.1 Iteration for the Energy Conserving Case for the General WaveHoltz Iter-

ation

Here we consider boundary conditions of either Dirichlet (β = 0) or Neumann (α = 0) type

in (3.4). This is typically the most difficult case for iterative Helmholtz solvers when Ω is bounded.

The wave energy is preserved in time and certain ω-frequencies in Helmholtz are resonant, meaning

they equal an eigenvalue of the operator −∇· (c2(x)∇). Moreover, the limiting amplitude principle

does not hold, and one can thus not obtain the Helmholtz solution by solving the wave equation

over a long time interval.

By the choice of boundary conditions the operator −∇ · (c2(x)∇) has a point spectrum

with non-negative eigenvalues. Denote those eigenmodes (λ2
j , φj(x)). We assume that the angular

frequency ω is not a resonance, i.e. ω2 6= λ2
j for all j. The Helmholtz equation (3.1) is then

wellposed.

We recall that for any q ∈ L2(Ω) we can expand

q(x) =
∞∑
j=0

q̂jφj(x),

for some coefficients q̂j and

||q||2L2(Ω) =
∞∑
j=0

|q̂j |2, c2min||∇q||2L2(Ω) ≤
∞∑
j=0

λ2
j |q̂j |2 ≤ c2

max||∇q||2L2(Ω).
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We start by expanding the Helmholtz solution u = uR + iuI , the initial data v0, v1 to the wave

equation (3.4), and the forcing f = fR + if I in this way,

uR(x) =
∞∑
j=0

ûRj φj(x), v0(x) =
∞∑
j=0

v̂0,jφj(x), v1(x) =
∞∑
j=0

v̂1,jφj(x), fR(x) =
∞∑
j=0

f̂Rj φj(x),

with analogous expansions for the imaginary parts of u and f , uI and f I , respectively. Then,

−λ2
j û
R
j + ω2ûRj = f̂Rj ⇒ ûRj =

f̂Rj
ω2 − λ2

j

,

and similarly for the imaginary parts ûIj and f̂ Ij . For the wave equation solution w(t, x) with initial

data w = v0 and wt = v1 we have

w(t, x) =
∞∑
j=0

ŵj(t)φj(x),

ŵj(t) = ûRj [cos(ωt)− cos(λjt)] + ûIj

[
sin(ωt)− ω

λj
sin(λjt)

]
+ v̂0,j cos(λjt) +

v̂1,j

λj
sin(λjt),

with

ŵN0 (t) = ûR0 [cos(ωt)− 1] + ûI0 [sin(ωt)− ωt] + v̂0,0 + v̂1,0t,

if λ0 = 0, as is the case for Neumann boundary conditions (a special case which we denote via the

superscript N in the following analysis). The filtering step then gives

Π

v0

v1

 =
∞∑
j=0

v̄j
v̄′j

φj(x),

where

v̄j = ûRj (1− β(λj))− ûIj
ω

λj
γ(λj) + v̂0,jβ(λj) +

v̂1,j

λj
γ(λj),

v̄′j = ûRj λjγ(λj) + ωûIj (1− β(λj))− v̂0,jλjγ(λj) + v̂1,jβ(λj),

and

β(λ) :=
2

T

∫ T

0

(
cos(ωt)− 1

4

)
cos(λt)dt, γ(λ) :=

2

T

∫ T

0

(
cos(ωt)− 1

4

)
sin(λt)dt.
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By definition we have∣∣∣∣γ(λj)

λj

∣∣∣∣ ≤ 2

T

∫ T

0

∣∣∣∣(cos(ωt)− 1

4

)∣∣∣∣ ∣∣∣∣tsin(λt)

λt

∣∣∣∣ dt ≤ 2

T

∫ T

0

5

4
tdt =

5π

2ω
, (3.7)

since | sin(x)/x| ≤ 1, which ensures the boundedness of the coefficients v̄j , v̄
′
j for small eigenvalues

λj .

Letting v0,j , v1,j denote the coefficients of v0, v1 in the eigenbasis of the Laplacian, we can

write the iteration asvn+1
0,j

vn+1
1,j

 =

Π

vn0
vn1



j

= (I −Bj)

 uRj
ωuIj

+Bj

vn0,j
vn1,j

 , (3.8)

where if we define βj = β(λj) and γj = γ(λj) then

Bj =

 βj γj/λj

−λjγj βj

 , BN
0 =

−1/2 −π/2ω

0 −1/2

 ,

Moreover, the eigenvectors and eigenvalues of Bj are

ξ±j =

±i/λ
1

 , ξN0 =

1

0

 , µj = βj ± iγj .

Introducing the linear operator S : L2(Ω)× L2(Ω)→ L2(Ω)× L2(Ω),

S
∞∑
j=0

ûRj
ûIj

φj(x) =
∞∑
j=0

Bj

ûRj
ûIj

φj(x), (3.9)

we may write the iteration as

 v

v′


(n+1)

= Π

 v

v′


(n)

=

 uR

ωuI

+ S


 v

v′


(n)

−

 uR

ωuI


 .

We note that, in contrast to the simplified iteration analyzed in [14], the operator S is not symmetric

for the general iteration. Despite this we may identify the eigenmodes of S from the eigenvectors

of Bj via ξ±j φj with eigenvalues µj = βj ± iγj and ξN0 = ξN0 φ0 with eigenvalue µN0 = −1/2.
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From (3.8), we see that the iteration for each mode takes the formvn+1
0,j

vn+1
1,j

 =

Π

vn0
vn1



j

=
(
I −Bn

j

) uRj
ωuIj

+Bn
j

v0
0,j

v0
1,j


so that  vn+1

0,j − uRj

vn+1
1,j − ωuIj

 = Bn
j

 v0
0,j − uRj

v0
1,j − ωuIj .

 . (3.10)

We thus require that Bn
j → 0 to ensure convergence of the fixed-point iteration to the solution,

[uR, ωuI ]T , which is true if and only if the spectral radius of Bj is less than unity uniformly in j.

That is, we require that |µj | < 1 uniformly in j. Defining the filter function µ(λ) := β(λ) + iγ(λ),

we may show (with a proof in Appendix .4) the following lemma

Lemma 3.1.1. The complex-valued filter function µ satisfies µ(ω) = 1 and

0 ≤ |µ(λ)| ≤ 1− 15

32

(
λ− ω
ω

)2

, when

∣∣∣∣λ− ωω
∣∣∣∣ ≤ 1

2
,

|µ(λ)| ≤ 7

3π
≈ 0.74, when

∣∣∣∣λ− ωω
∣∣∣∣ ≥ 1

2
,

|µ(λ)| ≤ b0
ω

λ− ω
, when λ > ω,

where b0 = 3/2π. Moreover, close to ω we have the local expansion

|µ(ω + r)| = 1− b1
( r
ω

)2
+R(r/ω)

( r
ω

)3
, (3.11)

b1 =
π2

6
− 1

4
≈ 1.39, ||R||∞ ≤

25π4

4

(
36 + 20π + 250π2 + 75π3

)
.

We denote

δj =
λj − ω
ω

,

the relative size of the gap between λj and the Helmholtz frequency, and then denote the smallest

gap (in magnitude) by δ,

δ = δj∗ , j∗ = argminj |δj |.

Then we have the following lemma
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Lemma 3.1.2. Suppose δ > 0. Then, the spectral radius ρ of S is strictly less than one, and for

small δ,

ρ = 1− b1δ2 +O(δ3), (3.12)

with b1 as in Lemma 3.1.1. Moreover, S is a bounded linear map from L2(Ω)×L2(Ω) to H1(Ω)×

L2(Ω), and from H1(Ω)× L2(Ω) to H1(Ω)×H1(Ω).

Proof. From Lemma 3.1.1 we get

ρ = sup
j
|µ(λj)| ≤ sup

j
max

(
1− 15

32
δ2
j ,

7

3π

)
≤ max

(
1− 15

32
δ2,

7

3π

)
< 1.

For the more precise estimate when δ is small we will use (3.11). Since 1 > ρ ≥ |µ(ω + ωδ)| → 1

as δ → 0, we can assume that ρ > 1− η2/2, with η := b1/2||R||∞, for small enough δ. Then, since

|µ(ω + ωδj)| ≤ 1− η2/2 for |δj | > η by Lemma 3.1.1, we have

ρ = sup
|δj |≤η

|µ(ω + ωδj)| = |µ(ω + ωδk∗)|,

for some k∗ with |δk∗ | ≤ η. If δk∗ = δj∗ (where δ = |δj∗ |) then (3.11) gives (3.12). If not, we have

η ≥ |δk∗ | ≥ δ and by Lemma 3.1.1

0 ≤ |µ(ω+ωδk∗)|−|µ(ω+ωδj∗)| = −b1(δ2
k∗−δ2)+R(δk∗)δ

3
k∗−R(δj∗)δ

3
j∗ ≤ −b1(δ2

k∗−δ2)+
b1
2

(δ2
k∗+δ

2),

which implies that δ2
k ≤ 3δ2 and therefore

ρ = 1−b1δ2
k∗+O(δ3

k∗) = 1−b1δ2 +b1(δ2−δ2
k∗)+O(δ3

k∗) = 1−b1δ2 +O(δ3
k∗+δ3) = 1−b1δ2 +O(δ3).

From which (3.12) follows.

Letting D := ωmin(1, b0(1 + 1/|δ|)), we note that by Lemma 3.1.1,

|λjµ(λj)| ≤ ω ≤ D, λj ≤ ω,

|λjµ(λj)| ≤ ω
b0λj
λj − ω

= ωb0(1 + 1/δj) ≤ D, λj > ω.

Moreover, triangle inequality gives that |β(λj)|, |γ(λj)| ≤ |µ(λj)|, which implies both λj |β(λj)| ≤ D

and λj |γ(λj)| ≤ D.



60

Suppose now that g, h ∈ L2(Ω) and

g(x) =
∞∑
j=0

ĝjφj(x), h(x) =
∞∑
j=0

ĥjφj(x).

Letting z(x) = [g(x), h(x)]T , ‖z‖L2×L2 = 1, we may split the norm of Sz into

||Sz||2H1(Ω)×L2(Ω) = ||Sz||2L2(Ω)×L2(Ω) + ||∇Sz||2L2(Ω)×L2(Ω). (3.13)

Letting C := max{D, |γ(λj)|/λj}, which is bounded via the estimate (3.7), straightforward algebra

gives the bound

||Sz||2L2(Ω)×L2(Ω) =
∞∑
j=0

|β(λj)ĝj +
γ(λj)

λj
ĥj |2 + |λjγ(λj)ĝj − β(λj)ĥj |2

≤
∞∑
j=0

(
|ĝj |+

|γ(λj)|
λj

|ĥj |
)2

+
(
λj |γ(λj)||ĝj |+ |ĥj |

)2

≤
∞∑
j=0

(1 + C2)(|ĝj |2 + |ĥj |2) + 4C|ĝj ||ĥj |

≤
∞∑
j=0

(1 + C2)(|ĝj |2 + |ĥj |2) + 4C(|ĝj |2 + |ĥj |2)

=
(
1 + C2 + 4C

)
||z||2L2(Ω)×L2(Ω),

since ab ≤ a2 + b2 for a, b ∈ [0, 1] and z has unit norm. For the second term of (3.13) we find

||∇Sz||2L2(Ω)×L2(Ω) ≤
∞∑
j=0

λ2
j

c2
min

|β(λj)ĝj +
γ(λj)

λj
ĥj |2︸ ︷︷ ︸

S1

+

∞∑
j=0

λ2
j

c2
min

| − γ(λj)λj ĝj + β(λj)ĥj |2︸ ︷︷ ︸
S2

.

For g, h ∈ L2(Ω), it follows that

S1 =

∞∑
j=0

λ2
j

c2
min

|β(λj)ĝj +
γ(λj)

λj
ĥj |2 ≤

∞∑
j=0

D2

c2
min

(
|ĝj |2 + |ĥj |2

)
+

2λ

c2
min

|β(λj)||γ(λj)||ĝj ||ĥj |

≤
∞∑
j=0

D2

c2
min

(
|ĝj |2 + |ĥj |2

)
+

2D

c2
min

(
|ĝj |2 + |ĥj |2

)
=
D2 + 2D

c2
min

‖z‖L2(Ω)×L2(Ω),

which gives

‖S‖2H1(Ω)×L2(Ω) = sup
‖z‖=1

||Sz||2H1(Ω)×L2(Ω) ≤
(

1 + C2 + 4C +
D2 + 2D

c2
min

)
,
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showing that S is a bounded linear map from L2(Ω)× L2(Ω) to H1(Ω)× L2(Ω).

If instead g ∈ H1(Ω) and h ∈ L2(Ω), then

S2 =
∞∑
j=0

λ2
j

c2
min

| − γ(λj)λj ĝj + β(λj)ĥj |2

≤
∞∑
j=0

1

c2
min

(
λ4
jγ

2(λj)|ĝj |2 + 2λ3
j |β(λj)||γ(λj)||ĝj ||ĥj |+ λ2

jβ
2(λj)|ĥj |2

)
≤
∞∑
j=0

D2

c2
min

(
λ2
j |ĝj |2 + 2λj |ĝj ||ĥj |+ |ĥj |2

)
.

We note that Hölder’s inequality gives

∞∑
j=0

λj |ĝj ||ĥj | ≤ cmax‖∇g‖L2(Ω)‖h‖L2(Ω),

so that

S2 ≤
D2

c2
min

(
c2

max‖∇g‖2L2(Ω) + 2cmax‖∇g‖L2(Ω)‖h‖L2(Ω) + ‖h‖2L2(Ω)

)
,

and thus

‖S‖2H1(Ω)×H1(Ω) ≤ ‖S‖
2
H1(Ω)×L2(Ω) + sup

‖z‖=1
S2 ≤ ‖S‖2H1(Ω)×L2(Ω) +

D2

c2
min

(c2
max + 2cmax + 1),

which shows that S is a bounded linear map from H1(Ω)× L2(Ω) to H1(Ω)×H1(Ω), proving the

lemma.

Further, denoting en := [Re{u} − vn0 , ωIm{u} − vn1 ]T = [en0 , e
n
1 ]T , from (3.10) we obtain

en = S[Re{u} − vn−1
0 , ωIm{u} − vn−1

1 ]T = Sn[Re{u} − v0
0, ωIm{u} − v0

1]T = Sne0,

which shows that en → 0 since Sn → 0. Thus the iterates [vn0 , v
n
1 ]T converge to [Re{u}, ωIm{u}]T

in L2(Ω) × L2(Ω). Since v0
0 = v0

1 = 0, by Lemma 3.1.2 it follows that the iterates [vn0 , v
n
1 ]T ∈

H1(Ω) × L2(Ω) for n > 0. Additionally we have that the iterates [vn0 , v
n
1 ]T ∈ H1(Ω) ×H1(Ω) for

n > 1. We can therefore also get convergence in H1(Ω)×H1(Ω). To show this, let

βj + iγj = rj exp(iφj), r2
j = |βj |2 + |γj |2, φj = arctan(γj/βj).
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It can then be shown that powers of the operator Bj can be written as

Bn
j = rnj

 cos(nφj) sin(nφj)/λj

−λj sin(nφj) cos(nφj)

 ,

where each entry is bounded and goes to zero in the limit as n → ∞ since the spectral radius of

Bj is less than one. From the Hölder inequality it follows that

∞∑
j=0

λj |ê0
j,0||ê1

j,1| ≤ cmax‖∇e0
0‖L2(Ω)‖e0

1‖L2(Ω),

so that

||∇Sne0||2L2(Ω)×L2(Ω) ≤
∞∑
j=0

λ2
j |rj |2n

c2
min

(∣∣∣∣cos(nφj)ê
0
j,0 +

sin(nφj)

λj
ê1
j,1

∣∣∣∣2
+
∣∣−λj sin(nφj)ê

0
j,0 + cos(nφj)ê

1
j,1

∣∣2)
≤
∞∑
j=0

|µj |2n

c2
min

(
λ2
j |ê0

j,0|2 + λj |ê0
j,0||ê1

j,1|+ |ê1
j,1|2

)
+
D2|µj |2n−2

c2
min

(
λ2
j |ê0

j,0|2 + λj |ê0
j,0||ê1

j,1|+ |ê1
j,1|2

)
≤

(
sup
j
|µj |

)2n−2
1 +D2

c2
min

∞∑
j=0

(
λ2
j |ê0

j,0|2 + λj |ê0
j,0||ê1

j,1|+ |ê1
j,1|2

)
≤ ρ2n−2 1 +D2

c2
min

(
c2

max‖∇e0
0‖2L2(Ω) + cmax‖∇e0

0‖L2(Ω)‖e0
1‖L2(Ω) + ‖e0

1‖2L2(Ω)

)
→ 0.

We conclude that the iteration converges in H1(Ω) ×H1(Ω) with convergence rate ρ. By Lemma

3.1.2 we have ρ ∼ 1− 1.39δ2 so that the smallest gap, δ, determines the convergence rate. We thus

have proven the following theorem

Theorem 3.1.3. The iteration in (3.6) and (3.5) converges in H1(Ω) × H1(Ω) for the Dirichlet

and Neumann problems away from resonances to the solution of the Helmholtz equation (3.1).

The convergence rate is 1−O(δ2), where δ is the minimum gap between ω and the eigenvalues of

−∇ · (c2(x)∇).
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As seen in [14], we may reformulate the iteration as the linear system

(I − S) v =: Av = b := Π0,

which allows the convergence to be accelerated by a Krylov method. We note that the evaluation

of A can be done by evolving the wave equation for one period in time with initial data v without

the need to explicitly form the matrix A.

Remark 3.1.1. The operator A for the general iteration is not symmetric unlike the simplified

iteration for energy-conserving problems where v1 = 0. For interior, energy-conserving problems

we recommend the use of the simplified iteration so that the conjugate gradient method may be

used to accelerate convergence. For other boundary conditions, the general WaveHoltz iteration is

required and a more versatile Krylov method, such as GMRES, should be used.

3.1.2 Convergence in the Non-Energy Conserving Case

With Theorem 3.1.3 providing convergence of the general WaveHoltz iteration in the energy-

conserving case, we turn toward proving convergence for problems with impedance boundary condi-

tions. For simplicity we prove convergence in a single spatial dimension. This is not restrictive, as it

is possible for the following technique to be extended to higher dimensions for particular problems.

Consider now the following Helmholtz problem with impedance boundary conditions

[
c2(x)u′(x)

]′
+ ω2u(x) = f(x), a ≤ x ≤ b,

iαωu(a)− βc(x)ux(a) = 0, (3.14)

iαωu(b) + βc(x)ux(b) = 0,

where α, β 6= 0. Here we assume 1/c ∈ L1
loc([a, b]), f ∈ L2([a, b]) is compactly supported away from

the boundary, and that c(a) = ca, c(b) = cb where c is constant in a neighborhood of the endpoints.
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We reformulate this in the time domain as

wtt =
∂

∂x

[
c2(x)

∂

∂x
w

]
− f(x)e−iωt, a ≤ x ≤ b, 0 ≤ t ≤ T,

w(0, x) = v0(x), wt(0, x) = v1(x),

αwt(t, a)− βc(x)wx(t, a) = 0,

αwt(t, b) + βc(x)wx(t, b) = 0.

In general, the solution of the above equation will yield complex-valued solutions and so we take the

real part of the equation as shown earlier and use the general iteration (3.6). Note that in 1D the

impedance boundary conditions with α = β = 1/
√

2 are equivalent to outflow/radiation conditions

when the initial data is compactly supported in the interval [a, b]. If α 6= β with α, β 6= 0, then in

addition to outgoing waves at the boundary there will be reflections due to the impedance boundary

condition. In either case, if we let ã < a− caT/2 and b̃ > b+ cbT/2, then w is equal to w̃ on [a, b]

for t ∈ [0, T ] if w̃ solves the following Neumann problem (with an outline of the construction in

Appendix .5)

w̃tt =
∂

∂x

[
c̃2(x)

∂

∂x
w̃

]
− Re{f̃(x)e−iωt}, ã ≤ x ≤ b̃, 0 ≤ t ≤ T,

w̃(0, x) = ṽ0(x), w̃t(0, x) = ṽ1(x), (3.15)

w̃x(t, a) = 0, w̃x(t, b) = 0,

where ṽ0 and c̃ are the constant extensions (with γ = α/β)

ṽ0(x) =



v0(a0), a ≤ x < a0,

v0(x), a0 ≤ x ≤ b0,

v0(b0), b0 < x ≤ b,

c̃(x) =



γca, a ≤ x < a0,

c(x), a0 ≤ x ≤ b0,

γcb, b0 < x ≤ b,

and ṽ1, f̃ are zero extensions of v1 and f , respectively.

That is, we extend the domain such that traveling waves may reflect off of the Neumann

boundary but not re-enter the domain of interest, a ≤ x ≤ b, within a period T . Let Π be the

WaveHoltz integral operator (3.5) on the original domain Ω with impedance boundary conditions.
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We recall that iterates generated by Π at a given point, x ∈ Ω, are the time-average of the wave

solution at x generated by the input data. Since the extended wave solution w̃(t, x) = w(t, x) for

0 ≤ t ≤ T , we may write Π = P Π̃E where P is a projection operator onto the initial interval,

i.e. Pv(x) = v(x)|a≤x≤b, E is the extension operator such that [v0, v1]T → [ṽ0, ṽ1]T , and Π̃ is the

WaveHoltz operator on the domain Ω̃. If it can be guaranteed that ω2 6= λ2
j where λ2

j is an eigenvalue

of the operator −∂x(c̃2(x)∂x), then we may prove convergence as was done for Theorem 3.1.3.

To show this, results on the continuity of eigenvalues of the Laplacian from [74] will be used.

We present the framework of [74] needed here and consider the following differential equation

−(c2y′)′ = λy, x ∈ (a′, b′), −∞ ≤ a′ < b′ ≤ ∞, λ ∈ R, (3.16)

where c2 : (a′, b′) → R and 1/c2 ∈ L1
loc(a

′, b′). Leting I = [a, b], a′ < a < b < b′ and additionally

imposing the Neumann conditions y′(a) = 0 = y′(b), the above Sturm-Liouville (SL) problem is

such that all eigenvalues are real, simple, and can be ordered to satisfy

0 ≤ λ2
0 < λ2

1 < λ2
2 < . . . ; lim

n→∞
λ2
n = +∞. (3.17)

We thus immediately have that the eigenvalues of the Laplacian are countable.

Under the above assumptions, we state the following theorem that is proven in [74].

Theorem 3.1.4 (Kong & Zettle). Let 1/c2 ∈ L1
loc(a

′, b′), fix a′, b′, and suppose b is such that

a′ < b < b′. Let λn(b) be an eigenvalue of the SL problem (3.16) with homogeneous Neumann bound-

ary conditions with corresponding eigenfunction un(x; b). Then the eigenvalue λ(b) ∈ C1([a′, b′])

satisfies the following differential equation:

λ′n(b) = −λn(b)u2(b; b).

That is, the eigenvalues of the SL problem (3.16) are differentiable functions of the endpoint

b. This gives us the following useful corollary.

Corollary 3.1.4.1. For n = 1, 2, · · · , λn(b) is a strictly decreasing function of b on [a′, b′].
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Proof. For homogeneous Neumann conditions, we have that u′n(b; b) = 0. It follows that un(b; b) 6= 0

as otherwise un(b; b) ≡ 0 since un satisfies a linear, homogeneous second order ODE. As λn(b) > 0

for n > 0 we then have

λ′n(b) = −λn(b)u2
n(b, b) < 0,

so that λn(b) is a strictly decreasing function of the endpoint b.

As a consequence of Theorem 3.1.4, we have

Lemma 3.1.5. Suppose c̃ ≥ 0 a.e. and ω > 0. Fix a, and consider the Neumann eigenvalues λn(b)

for b ∈ (b0 + cbT/2, r) where r > b0 + cbT/2. Then there exists an endpoint b̃ ∈ (b0 + cbT/2, r) such

that ω2 6= λn(b̃) for each n ∈ N0.

Proof. Clearly we have λ0(b) = 0 for every b, and since ω > 0 we have ω2 6= λ0(b). Suppose now that

b is such that ω2 = λn(b) for some n ∈ N. Recall that by (3.17) we have that ω2 = λn(b) < λn+1(b).

Since λn(b), λn+1(b) are continuous, decreasing functions of the endpoint by Corollary 3.1.4.1, there

necessarily exists δ > 0 such that

λn(b+ δ) < ω2 < λn+1(b+ δ),

Letting b̃ = b+ δ we thus have that ω2 6= λn(b̃) for each n ∈ N0, as desired.

From this we can prove the following theorem, in which we note we demonstrate convergence

in H1(Ω)× L2(Ω) rather than H1(Ω)×H1(Ω).

Theorem 3.1.6. Let the 1D domain Ω = [a, b] be a bounded interval. Suppose f ∈ L2(Ω) is

compactly supported in Ω away from the boundary, 1/c2 ∈ L1
loc(Ω), and c(a) = ca, c(b) = cb, with

c constant near the endpoints. Under these conditions, the iteration (3.6) and (3.5) converges in

H1(Ω) × L2(Ω) for the Helmholtz problem with impedance boundary conditions to the solution of

the Helmholtz equation (3.14).
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Proof. By Lemma 3.1.5, there exists an extended wave equation (3.15) on the domain Ω̃ = [ã, b̃]

with homogeneous Neumann boundary conditions such that the eigenvalues λ̃j of the Laplacian,

−∂x(c̃2wx), on Ω̃ are not in resonance. Defining β̃j = β(λ̃j), γ̃j = γ(λ̃j), and µ̃j = µ(λ̃j), this

immediately gives that the spectral radius of the WaveHoltz operator, ρ̃ = supj |µ̃j |, is smaller than

one. Moreover, the extended wave solution w̃ on Ω̃ coincides with the interior impedance wave

solution w on Ω for t ∈ [0, T ].

Letting u be the solution of the Helmholtz equation (3.14), we define

q(t, x) = cos(ωt)[Re{u}, ωIm{u}]T the time-harmonic Helmholtz solution in Ω and w̃n(t, x) the

solution of (3.15) with initial data vn0 , v
n
1 . Letting the error be en := [Re{u}−vn0 , ωIm{u}−vn1 ]T =

[en0 , e
n
1 ]T , it is clear that the difference d(t, x) = q(t, x)−w(t, x) satisfies the unforced, homogeneous

wave equation

dtt =
∂

∂x

[
c2(x)

∂

∂x
d

]
, a ≤ x ≤ b, 0 ≤ t ≤ T,

d(0, x) = e0(x), dt(0, x) = e1(x),

αdt(t, a)− βc(x)dx(t, a) = 0,

αdt(t, b) + βc(x)dx(t, b) = 0.

It follows that the WaveHoltz iteration applied to the error is of the form en+1
0

en+1
1

 = Π

 en0

en1

 = P S̃E

 en0

en1

 = (P S̃E)n+1

 e0
0

e0
1

 , (3.18)

where S̃ is the representation of the operator Π̃, as defined in (3.9), with respect to the eigenbasis

of the extended Laplacian. We may rearrange the above iteration as

(P S̃E)n+1e0 = P (S̃EP )nS̃Ee0 = P (S̃EP )nẽ0,

where ẽ0 = S̃Ee0 ∈ H1(Ω̃)× L2(Ω̃) since e0 ∈ L2(Ω)× L2(Ω) and S̃ is a bounded linear map from

L2(Ω̃)×L2(Ω̃) to H1(Ω̃)×L2(Ω̃) by Lemma 3.1.2. We then have that (S̃EP )n : H1(Ω̃)×L2(Ω̃)→

H1(Ω̃)× L2(Ω̃) and we may obtain convergence if ‖(S̃EP )nẽ0‖c goes to zero.
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Let z̃ = [ṽ0, ṽ1]T with z̃ ∈ H1(Ω̃)× L2(Ω̃). We define the energy semi-norm ‖ · ‖c on H1(Ω̃),

‖ṽ0‖2c =

∥∥∥∥c̃ ∂∂xṽ0

∥∥∥∥2

L2(Ω̃)

=

∞∑
j=0

λ̃2
j |ṽ0,j |2,

with the associated semi-norm on H1(Ω̃)× L2(Ω̃)

‖z̃‖2c = ‖ṽ0‖2c + ‖ṽ1‖2L2(Ω̃)
=

∥∥∥∥c̃ ∂∂xṽ0

∥∥∥∥2

L2(Ω̃)

+ ‖ṽ1‖2L2(Ω̃)
.

Note that in this semi-norm we have that

‖EP z̃‖2c =

∫
Ω̃

∣∣∣∣c̃ ∂∂xEP ṽ0

∣∣∣∣2 + |EPṽ1|2 dx =

∫
Ω

∣∣∣∣c̃ ∂∂xṽ0

∣∣∣∣2 + |ṽ1|2 dx ≤
∫

Ω̃

∣∣∣∣c̃ ∂∂xṽ0

∣∣∣∣2 + |ṽ1|2 dx

≤ ‖z̃‖2c .

We define ỹ = EP z̃, where ỹ has the form

ỹ = EP

∞∑
j=0

ṽ0,j

ṽ1,j

φj =

∞∑
j=0

ỹ0,j

ỹ1,j

φj .
It follows that

S̃EP z̃ =
∞∑
j=0

Bj

ỹ0,j

ỹ1,j

φj =
∞∑
j=0

β̃j ỹ0,j + γ̃j ỹ1,j/λ̃j

−λ̃j ỹ0,j + β̃j ỹ1,j

φj .
so that

‖S̃EP z̃‖2c =

∞∑
j=0

λ̃2
j

(
β̃j ỹ0,j +

γ̃j

λ̃j
ỹ1,j

)2

+

∞∑
j=0

(
−λ̃j γ̃j ỹ0,j + β̃j ỹ1,j

)2
.

Since β̃2
j + γ̃2

j = |µ̃j |2 ≤ ρ̃2 < 1, a simple expansion shows that

‖S̃EP z̃‖2c =

∞∑
j=0

(β̃2
j + γ̃2

j )(λ̃2
j |ỹ0,j |2 + |ỹ1,j |2) ≤

(
sup
j
|µ̃j |2

) ∞∑
j=0

λ̃2
j |ỹ0,j |2 + |ỹ1,j |2 ≤ ρ̃2‖z̃‖2c .

It follows that

‖(S̃EP )nẽ0‖2c ≤ ρ̃2‖(S̃EP )n−1ẽ0‖2c ≤ · · · ≤ ρ̃2n‖ẽ0‖2c → 0,

so that ‖∇en0‖L2(Ω), ‖en1‖L2(Ω) → 0.
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With ẽn0 = (S̃EP )nẽ0, an application of the triangle and Poincaré inequality now gives

‖ẽn0‖2H1(Ω̃)
= ‖∇ẽn0‖2L2(Ω̃)

+ ‖ẽn0‖2L2(Ω̃)
≤ ‖∇ẽn0‖2L2(Ω̃)

+ ‖ẽn0 −
1

2
ẽn0,0φ0‖2L2(Ω̃)

+
1

2
‖ẽn0,0φ0‖2L2(Ω̃)

≤ ‖∇ẽn0‖2L2(Ω̃)
+ C‖∇ẽn0‖2L2(Ω̃)

+
1

2
‖ẽn0,0φ0‖2L2(Ω̃)

≤ (C + 1)‖∇ẽn0‖2L2(Ω̃)
+

1

2
‖ẽn0,0φ0‖2L2(Ω̃)

, (3.19)

where φ0 ∈ Ω̃ is a constant eigenfunction of the Laplacian (and thus of S̃) with eigenvalue λ0 = 0.

It follows that to obtain convergence in H1(Ω̃) of the error ẽn0 we must examine the convergence of

ẽ0,0 separately.

It is clear that any constant function on Ω̃ is an eigenfunction of the operator EP . With

ẽ0 = S̃Ee0 we have

S̃EP

ẽ0,0

0

φ0 = S̃

ẽ0,0

0

φ0 = BN
0

ẽ0,0

0

φ0 = −1

2

ẽ0,0

0

φ0,

so that with z̃0 = [ẽ0,0, 0]Tφ0 then

∥∥∥(S̃EP )nz̃0

∥∥∥
L2(Ω̃)×L2(Ω̃)

≤ 2−1
∥∥∥(S̃EP )n−1z̃0

∥∥∥
L2(Ω̃)×L2(Ω̃)

≤ · · · ≤ 2−n ‖z̃0‖L2(Ω̃)×L2(Ω̃) → 0.

It then follows that

lim
n→∞

(P S̃E)n+1e0 = lim
n→∞

P (S̃EP )nẽ0 = 0 =⇒ lim
n→∞

1

2
‖ẽn0,0φ0‖2L2(Ω̃)

= 0.

Thus taking the limit of (3.19) gives ‖ẽn0‖2H1(Ω̃)
→ 0, so that we obtain convergence of the iteration

in H1(Ω)× L2(Ω).

Remark 3.1.2. The above analysis is for a single spatial dimension, but we note that it in certain

situations it may be extended to higher dimensions. For instance, interior impedance problems

with constant coefficients may be extended by an appropriate enclosing box from which the above

arguments can give convergence. In general, it is difficult to prove convergence in higher dimensions

as care needs to be taken to make appropriate wavespeed extensions that avoid reflections due to

potentially discontinuous wavespeeds close to boundaries with impedance conditions.



70

3.2 Damped Wave/Helmholtz Equation

As mentioned in the introduction, a popular preconditioning approach for solving Helmholtz

problems is to introduce a damping term as in the shifted Laplacian preconditioners [44]. In this

section we similarly consider the complex-valued damped wave equation

wtt + ηwt = ∇ ·
[
c2(x)∇w

]
− f(x)e−iωt,

from which we note that if w(t, x) = u(x)e−iωt then

∇ ·
[
c2(x)∇u

]
+
(
ω2 + iηω

)
u = f(x),

so that we essentially have added a purely imaginary shift of the Laplacian

L = −∇ ·
[
c2(x)∇

]
− iηω.

While for the sake of simplicity we consider the complex-valued problem in this section, in practice

we solve the real-valued problem as presented in Section 3.1 with the filter (3.5). For the above

complex-valued problem, we may then similarly prove an analogous result to Theorem 3.1.3

Theorem 3.2.1. The iteration (3.6) with the complex-valued filter

Π

 v0

v1

 =
1

T

∫ T

0
eiωt

 w(t, x)

wt(t, x)

 dt, T =
2π

ω
,

converges for every η > 0 with a convergence rate bounded by 2(1− e−ηT/2)/ηT .

Proof. Suppose (λ2
j , φj) are the eigenmodes of the real-valued Laplacian in the domain Ω. We note

that the shifted Laplacian now has a spectrum that is λ2
j − iηω. Expanding in terms of this basis

and taking inner products, we can see that

(ω2 + iηω − λ2
j )ûj = f̂j ,

where we expand the real and imaginary parts of u and f as ûj = uRj + iuIj and f̂j = fRj + if Ij . Let

the damped wave equation solution have the form

∞∑
n=0

wj(t)φj(x).
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Defining αj =
√

4λ2
j − η2/2, then the solution can be shown to be given by

wj(t) = ûj

(
e−iωt − e−

ηt
2

[
cos(αjt) +

η − 2iω

2αj
sin(αjt)

])
+ v̂0,je

− ηt
2

[
cos(αjt) +

η

2αj
sin(αjt)

]
+
v̂1,j

αj
e−

ηt
2 sin(αjt),

from which we note that we arrive at exactly the same set of coefficients as in the previous analysis

if η = 0 and the real part of the solution is taken. Using the complex-valued filters

β̂(α) :=
1

T

∫ T

0
e(iω−η/2)t cos(αt)dt, γ̂(α) :=

1

T

∫ T

0
e(iω−η/2)t sin(αt)dt,

we can write the iteration asvn+1
0,j

vn+1
1,j

 = Π

vn0,j
vn1,j

 =
(
I − B̂j

) uj

iωuj

+ B̂j

vn0,j
vn1,j

 , (3.20)

where if β̂j = β̂(αj) and γ̂j = γ̂(αj) then

B̂j =

 β̂j + η
2αj

γ̂j γ̂j/αj

−(αj + η2

4αj
)γ̂j β̂j − η

2αj
γ̂j

 .

As in the previous analysis, we require that the spectral radius of B̂j be less than one. The

eigenvalues are given by µ̂j = β̂j ± iγ̂j so that by definition

|µ̂j | = |β̂j ± iγ̂j | =
∣∣∣∣ 1

T

∫ T

0
ei(ω±αj)te−ηt/2 dt

∣∣∣∣ ≤ 2

ηT
(1− e−ηT/2) < 1, (3.21)

given that η > 0.

Thus the iteration always converges in the damped case. From (3.21) we see that for a

desired fixed rate of convergence the damping parameter η must grow proportionally to ω, and

that frequency-independent convergence is achieved by choosing η = O(ω).

3.3 Analysis of Higher Order Time Stepping Schemes for the Discrete

Iteration

We introduce the temporal grid points tn = n∆t and a spatial grid with N points together

with the vector wn ∈ RN containing the grid function values of the approximation at t = tn. We
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also let f ∈ RN hold the corresponding values of the right hand side. The discretization of the

continuous spatial operator −∇ · (c2(x)∇), including the boundary conditions, is denoted Lh and

it can be represented as an N ×N matrix. The values −∇ · (c2(x)∇w) are then approximated by

Lhw
n. As in the continuous case, we assume Lh has the eigenmodes (λ2

j , φj), such that Lhφj = λ2
jφj

for j = 1, . . . , N , where all λj are strictly positive and ordered as 0 ≤ λ1 ≤ . . . ≤ λN .

We let the discrete Helmholtz solution u be defined through

−Lhu+ ω2u = f.

The numerical approximation of the iteration operator is denoted Πh, and it is implemented as

follows. Given v ∈ RN , we use the leap frog method to solve the wave equation and add in higher

order corrections as in the Modified Equation (ME) approach [99, 5]. For a general 2m scheme,

recall that via Taylor expansion

wn+1 − 2wn + wn−1

∆t2
= wtt + 2

∞∑
k=2

∆t2(k−1)

(2k)!

∂2k

∂t2k
wn.

Then using the PDE to convert time derivatives to spatial derivatives we get the expression

∂2k

∂t2k
wn = Lkhw

n + cos(ωtn)
k−1∑
`=0

(−1)k+`ω2(k−`−1)L`hf,

for k = 1, 2, . . . . Then for a 2m order scheme we have

wn+1 − 2wn + wn−1

∆t2
− 2

m∑
k=2

∆t2(k−1)

(2k)!

[
Lkhw

n + cos(ωtn)
k−1∑
`=0

(−1)k+`ω2(k−`−1)L`hf

]
(3.22)

= Lhw
n − f cos(ωtn), (3.23)

with time step ∆t = T/M for some integer M , and initial data

w0 = v, w−1 = v +
m∑
k=1

(−1)k∆t2k

(2k)!

[
−Lkhv +

k−1∑
`=0

(−1)`ω2(k−`−1)L`hf

]
.

The trapezoidal rule is then used to compute Πhv,

Πhv =
2∆t

T

M∑
n=0

ηn

(
cos(ωtn)− 1

4

)
wn, ηn =


1
2 , n = 0 or n = M,

1, 0 < n < M.

(3.24)

We may then prove the following theorem that is a generalization of Theorem 2.4 of [14].
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Theorem 3.3.1. Suppose there are no resonances, such that δh = minj |λj −ω|/ω > 0. Moreover,

assume that ∆t satisfies the stability and accuracy requirements

∆t <
2

λN + 2ω/π
, ∆tω ≤ min(δh, 1). (3.25)

Then the fixed point iteration v(k+1) = Πhv
(k) with v(0) = 0 converges to v∞ which is a solution to

the discretized Helmholtz equation with the modified frequency ω̃ ,

−Lhv∞ + ω̃2v∞ = f, sin2(ω∆t/2) =

m∑
j=1

(−1)j+1 (∆tω̃)2j

2(2j)!
= sin2(ω̃∆t/2) +O(∆t2m+2),

where 2m is the order of the ME time stepping scheme. Moreover, |ω− ω̃| = O(∆t2m), ‖u−v∞‖ =

O(∆t2m), and the convergence rate is at least ρh = max(1− 0.3δ2
h, 0.6).

Proof. We expand all functions in eigenmodes of Lh,

wn =
N∑
j=1

ŵnj φj , f =
N∑
j=1

f̂jφj , u =
N∑
j=1

ûjφj , v =
N∑
j=1

v̂jφj , v∞ =
N∑
j=1

v̂∞j φj .

Then the Helmholtz eigenmodes of u and v∞ satisfy

ûj =
f̂j

ω2 − λ2
j

, v̂∞j =
f̂j

ω̃2 − λ2
j

.

We note that ω̃ is well-defined, with a verification in Appendix .7. Moreover, ω̃ is not resonant and

v̂∞j is well-defined for all j, since by (11) and (3.25)

|ω̃ − λj | ≥ |ω − λj | − |ω̃ − ω| ≥ ωδh −
∆t2mω2m+1

(2m+ 2)!
≥ ω

(
δh −

1

(2m+ 2)!
min(δh, 1)2m

)
> 0.

The wave solution eigenmodes to (3.22) are given by the difference equation

ŵn+1
j − 2ŵnj + ŵn−1

j +2

[
m∑
k=1

(−1)k+1∆t2kλ2k
j

(2k)!

]
ŵnj (3.26)

= 2

[
m∑
k=1

(−1)k∆t2k

(2k)!

k−1∑
`=0

ω2(k−`−1)λ2`
j

]
f̂j cos(ωtn), (3.27)

with initial data

ŵ0
j = v̂j , ŵ−1

j = v̂j

(
1 +

m∑
k=1

(−1)k∆t2k

(2k)!
λ2k
j

)
+ f̂j

(
m∑
k=1

(−1)k∆t2k

(2k)!

k−1∑
`=0

ω2(k−`−1)λ2`
j

)
.
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By (3.25), the discrete solution is stable and given by (the verification of which is found in Ap-

pendix .6)

ŵnj = (v̂j − v̂∞j ) cos(λ̃jtn) + v̂∞j cos(ωtn), (3.28)

where λ̃j is well-defined by the relation (with a verification in Appendix .7)

sin2(λ̃j∆t/2) =
m∑
k=1

(−1)k+1 (∆tλj)
2k

2(2k)!
. (3.29)

Since |ω−ω̃| ≤ ∆t2ω3/24, the following lemma (restated from [14]) gives convergence of the discrete

iteration.

Lemma 3.3.2. Under the assumptions of Theorem 3.3.1,

max
1≤j≤N

|βh(λ̃j)| ≤ ρh =: max(1− 0.3δ2
h, 0.6). (3.30)

From (11), it follows that |ω− ω̃| = O(∆t2m). Letting e = u−v∞ be the error in the discrete

solutions, the components of the error in the basis of the Laplacian satisfy

|ej | = |ûj − v̂∞j | =

∣∣∣∣∣f̂j
(

1

ω2 − λ2
j

− 1

ω̃2 − λ2
j

)∣∣∣∣∣ =

∣∣∣∣∣f̂j
(

ω̃2 − ω2

(ω̃2 − λ2
j )(ω

2 − λ2
j )

)∣∣∣∣∣
=

∣∣∣∣f̂j ( (ω̃ − ω)(ω̃ + ω)

(ω̃ − λj)(ω̃ + λj)(ω − λj)(ω + λj)

)∣∣∣∣
=

∣∣∣∣∣f̂j
(

(ω̃ − ω)(ω̃ + ω)

ω̃δ̃j(ω̃ + λj)ωδj(ω + λj)

)∣∣∣∣∣
≤
∣∣∣f̂j(ω̃ − ω)

∣∣∣ ( (ω̃ + ω)

ω̃δ̃∗(ω̃ + λ1)ωδ∗(ω + λ1)

)
,

where δ∗ = minj δj = (ω − λj)/ω and δ̃∗ = minj δ̃j = (ω̃ − λj)/ω. This gives

‖u− v∞‖2 = ‖e‖2 ≤ |ω̃ − ω|
(

(ω̃ + ω)

ω̃δ̃∗(ω̃ + λ1)ωδ∗(ω + λ1)

)
‖f‖2 ≈ O(∆t2m),

since δ∗, δ̃∗ > 0, concluding the proof of the theorem.

Remark 3.3.1. As alluded to in Remark 6 of [14], knowledge of how a particular discretization

approximates the eigenvalues of the continuous operator can be used to improve the iteration. In
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fact, the above error due to time discretization can be removed by defining ω̄ by the relation

sin2(ω̄∆t/2) =

m∑
k=1

(−1)k+1 (∆tω)2k

2(2k)!
.

Then using f cos(ω̄tn) instead of f cos(ωtn) in the time stepping (3.22), in addition to the modified

trapezoidal quadrature rule (first introduced in [93])

Πhv =
2∆t

T

M∑
n=0

ηn
cos(ωtn)

cos(ω̄tn)

(
cos(ωtn)− 1

4

)
wn, ηn =


1
2 , n = 0 or n = M,

1, 0 < n < M,

gives that the limit will be precisely the discrete Helmholtz solution, v∞ = u, as long as the time step

size is chosen so that cos(ω̄tn) 6= 0. Moreover, the first timestep restriction of (3.25) arising from

the usual CFL condition for the second order scheme may be relaxed (expressions for which may be

found in [56]) though the condition ∆tω ≤ min(δh, 1) may be more restrictive for problems close to

resonance. We additionally note that in [101] an alternative approach to remove time-discretization

error was presented, however the approach modified the timestepping scheme whereas we modify the

frequency of the forcing and update our quadrature rule.

3.4 Wave Equation Solvers

In this section we briefly outline the numerical methods we use in the experimental section

below. We consider both discontinuous Galerkin finite element solvers and finite difference solvers.

In all the experiments we always use the trapezoidal rule to compute the integral in the WaveHoltz

iteration.

3.4.1 The Energy Based Discontinuous Galerkin Method

Our spatial discretization is a direct application of the formulation described for general

second order wave equations in [9, 10]. Here we outline the spatial discretization for the special

case of the scalar wave equation in one dimension and refer the reader to [9] for the general case.
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The energy of the scalar wave equation is

H(t) =

∫
D

v2

2
+G(x,wx)dx,

where

G(x,wx) =
c2(x)w2

x

2
,

is the potential energy density, v is the velocity (not to be confused with the iterates vn above)

or the time derivative of the displacement, v = wt. The wave equation, written as a second order

equation in space and first order in time then takes the form

wt = v,

vt = −δG,

where δG is the variational derivative of the potential energy

δG = −(Gwx)x = −(c2(x)wx)x.

For the continuous problem the change in energy is

dH(t)

dt
=

∫
D
vvt + wt(c

2(x)wx)x dx = [wt(c
2(x)wx)]∂D, (3.31)

where the last equality follows from integration by parts together with the wave equation. Now,

a variational formulation that mimics the above energy identity can be obtained if the equation

v−wt = 0 is tested with the variational derivative of the potential energy. Let Ωj be an element and

Πs(Ωj) be the space of polynomials of degree s, then the variational formulation on that element

is:

Problem 2. Find vh ∈ Πs(Ωj), w
h ∈ Πr(Ωj) such that for all ψ ∈ Πs(Ωj), φ ∈ Πr(Ωj)∫

Ωj

c2φx

(
∂whx
∂t
− vhx

)
dx = [c2φx · n

(
v∗ − vh

)
]∂Ωj , (3.32)∫

Ωj

ψ
∂vh

∂t
+ c2ψx · whx dx = [ψ (c2wx)∗]∂Ωj . (3.33)
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Let [[f ]] and {f} denote the jump and average of a quantity f at the interface between two

elements, then, choosing the numerical fluxes as

v∗ = {v} − τ1[[c2wx]]

(c2wx)∗ = {c2wx} − τ2[[v]],

will yields a contribution −τ1([[c2wx]])2 − τ2([[v]])2 from each element face to the change of the

discrete energy

dHh(t)

dt
=

d

dt

∑
j

∫
Ωj

(vh)2

2
+G(x,whx).

Physical boundary conditions can also be handled by appropriate specification of the numerical

fluxes, see [9] for details. The above variational formulation and choice of numerical fluxes results

in an energy identity similar to (3.31). However, as the energy is invariant to certain transformations

the variational problem does not fully determine the time derivatives of wh on each element and

independent equations must be introduced. In this case there is one invariant and an independent

equation is
∫

Ωj

(
∂wh

∂t − v
h
)

= 0. For the general case and for the elastic wave equation see [9] and

[10].

In this chapter we always choose τi > 0 (so-called upwind or Sommerfeld fluxes) and we

always choose the approximation spaces to be of the same degree r = s. These choices result in

methods that are r + 1 order accurate in space.

3.4.2 Symmetric Interior Penalty Discontinuous Galerkin Method

In addition to the above energy DG method, we also consider the Symmetric Interior Penalty

DG (SIPDG) discretization, [62], for examples in two dimensions. The bilinear form in this case is

ah(u, v) =
∑
K∈Th

∫
K
c2∇u · ∇v dx−

∑
f∈Fh

∫
F

[[u]] · {c2∇v} ds−
∑
f∈Fh

∫
F

[[v]] · {c2∇u} ds

+
∑
f∈Fh

∫
F
γh−1

F c2[[u]] · [[v]] ds,

where Th is a collection of triangular elements, Fh is the collection of element faces, hF is the

diameter of the edge or face F , and γ is the interior penalty stabilization parameter which must
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be chosen to be sufficiently large to ensure the system is positive-definite.

3.4.3 Finite Difference Discretizations

For the finite difference examples in a single dimension, we consider discretizations by uniform

grids xi = xL+ ihx,, with i = −1, . . . , n+1 and hx = (xR−xL)/n. To impose impedance boundary

conditions of the form wt ± ~n · ∇w = 0 we evolve the wave equation as a first order system in time

according to the semi-discrete approximation

dvi(t)

dt
= (D+D−)wi, (3.34)

dwi(t)

dt
= vi, (3.35)

and for the boundaries we find the ghost point values by enforcing

v0 −D0w0 = 0, vn −D0wn = 0. (3.36)

Here we have used the standard forward, backward and centered finite difference operators, for

example hD+wi = wi+1 − wi etc.

3.4.4 Time Discretization

For some of the numerical examples in a single dimension, we use either an explicit second

order accurate centered discretization of wtt or use the higher order corrected ME methods described

in Section 3.3.

For the DG discretizations we employ Taylor series time-stepping in order to match the order

of accuracy in space and time. Assuming that all the degrees of freedom have been assembled into

a vector w we can write the semi-discrete method as wt = Qw with Q being a matrix representing

the spatial discretization. Assuming we know the discrete solution at the time tn we can advance

it to the next time step tn+1 = tn + ∆t by the simple formula

w(tn + ∆t) = w(tn) + ∆twt(tn) +
(∆t)2

2!
wtt(tn) . . .

= w(tn) + ∆tQw(tn) +
(∆t)2

2!
Q2w(tn) . . .
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The stability domain of the Taylor series which truncates at time derivative number NT includes

the imaginary axis if mod(NT, 4) = 3 or mod(NT, 4) = 0. However as we use a slightly dissipative

spatial discretization the spectrum of our discrete operator will be contained in the stability domain

of all sufficiently large choices of NT (i.e. the NT should not be smaller than the spatial order of

approximation). Note also that the stability domain grows linearly with the number of terms.

3.5 Numerical Examples

In this section we illustrate the properties of the proposed iteration and its Krylov accelerated

version by a sequence of numerical experiments in one and two spatial dimensions.

3.5.1 Examples in One Dimension

3.5.1.1 Convergence Rate for Impedance Boundary Conditions

In [14], an application of Weyl asymptotics [109] revealed that the mininal relative gap to

resonance, δ = minj |ω−λj |/ω where λ2
j are the eigenvalues of the Laplacian, shrinks as ω−d where

d is the spatial dimension of the Helmholtz problem of interest. Analysis of the symmetric, positive

definite formulation of the iteration then yielded a convergence rate of 1 − O(δ2) ≈ 1 − O(ω−2d).

However, numerical experiments with Helmholtz problems with certain open/outflow boundary

conditions suggest a much more attractive convergence rate than the unacceptable 1 − O(ω−2d)

rate. A natural question then is whether or not this seemingly pessimistic convergence rate can be

observed for outflow boundary conditions which are much more common in practical applications.

To that end, we consider a set of sample Helmholtz problems in a single spatial dimension

with a constant (normalized) speed of sound, c = 1, in the domain 0 ≤ x ≤ 2 where we impose the

impedance boundary condition

wt + ~n · wx = 0,

which we note is equivalent to the Sommerfeld radiation condition. The Helmholtz problem under

consideration has no forcing and so f = 0. In this case the solution is not unique (we have sin(ωx)
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and cos(ωx) as solutions), but we nevertheless may apply the WaveHoltz iteration. We formulate

the wave equation in first order form and apply the extended iteration (3.6) since the boundary

conditions do not conserve energy. The Laplacian is discretized with a standard three-point finite

difference approximation, and a fourth order Taylor scheme is used for timestepping. We define

the initial conditions as

v0(x) = sin(ωx)− 1

2
(sin((ω + 2π)x) + sin((ω − 2π)x)) , v1(x) = − d

dx
v0(x),

which are shown in Figure 3.1.
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Figure 3.1: (Left, Middle) The initial conditions v0 and v1 for a Helmholtz frequency of ω = 10π.

(Right) The estimate of the quantity 1− ‖S‖ with increasing Helmholtz frequency ω.

By definition, ‖S‖2 = sup‖z‖2 6=0 ‖Sz‖2/‖z‖2 ≥ ‖Sz0‖2/‖z0‖2 so that if ‖Sz0‖2/‖z0‖ ≈ 1 −

O(ω−2) is observed then the estimate of the spectral radius of the fixed point operator S is tight

even for the problem with impedance boundary conditions. We consider a sweep of Helmholtz

frequencies ω = 10π, 15π, 20π, . . . , 120π with fifty points per wavelength and a CFL number of

1/10 for the solution of the wave equation. The results of this experiment are shown in Figure 3.1.

On the left of Figure 3.1 we see the first part of the initial condition v0 for a frequency of

ω = 10π. We note that this specific initial condition is constructed such that it is close to a resonant

mode - which the filter-transfer function β weakly damps - as well as being close to zero at the

boundary so that a negligible amount of energy exits the system due to the impedance boundary

conditions in a single iteration. These two defining characteristics of the initial condition lead to
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the norm estimate of the fixed-point iteration operator S on the right of Figure 3.1. We observe

that the norm of S does indeed approach unity at a rate of ω−2, as predicted by theory. Thus, while

the preceeding analysis “artificially” leveraged energy-conserving boundary conditions to obtain an

estimate of the convergence rate for open problems, it is possible to realize the ‘worst-case’ rate

implied by the energy-conserving regime.

Remark 3.5.1. We note that the estimate for the convergence rate is a pointwise estimate. Re-

peated application of the fixed-point iteration will (eventually) remove the modes close to resonance

and a faster convergence rate is observed. In Figure 3.2 we repeat the above experiment for the

frequencies ω = 10π, 40π, and 70π but continue the iteration until the iterates converge to the zero

solution.
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Figure 3.2: The norm of WaveHoltz iterates for increasing Helmholtz frequencies of ω = 10π, 40π,

and 70π for the adversarial example of Figure 3.1.

We observe that after an initial phase the rate of convergence of the iterates to the solution increases

significantly since the data has propagated and exited the domain. We believe that the average

behavior over many fixed-point iterations leads to the much more attractive rates seen in the Krylov-

accelerated numerical experiments of [14]. Moreover, this example was pathologically constructed

and we note that so far we have been unable to construct initial conditions to realize the worst-case
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rate in higher than one dimension.

Assuming radially symmetric solutions to the Helmholtz equation, it is possible to cast higher

dimensional problems as 1D problems. Specifically, the wave equation in cylindrical/spherical

coordinates is

∂2w

∂t2
=
∂2w

∂r2
+
α

r

∂w

∂r
, r ∈ Ω, 0 ≤ t ≤ T,

∂w

∂r
(t, 0) = 0, 0 ≤ t ≤ T,

∂w

∂n
(t, r) +

∂w

∂t
(t, r) = 0, x ∈ ∂Ω,

where α = 1 corresponds to cylindrical coordinates and α = 2 corresponds to spherical. We use

a second order finite difference discretization (see [89] for details) with Ω = [0, 1]. The initial

condition is analagous to the previous example,

v0(r) = sin(ω(r + 1))− 1

2
(sin((ω + 2π)(r + 1)) + sin((ω − 2π)(r + 1))) , v1(r) = − d

dr
v0(r).

We consider a set of frequencies 10π, 11π, . . . , 30π and use fifty points per wavelength in the com-

putation with a CFL of 1/100. Below we show the results of the experiment in Figure 3.3.
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Figure 3.3: The estimate of the quantity 1 − ‖S‖ with increasing Helmholtz frequency ω for a

radially symmetric initial condition.
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From Figure 3.3 we observe that the norm of S approaches unity at a nearly linear rate in

the frequency ω in 2D and a sublinear rate for the 3D problem, both of which are more favorable

than the quadratic rate in a single spatial dimension.

Remark 3.5.2. From Figure 3.3 it is clear that with a fixed discretization and initial condition,

the convergence rate improves with increasing dimension. This is perhaps unsurprising given an

increase in the local energy decay rate for the wave equation from two to three dimensions, along

with a richer set of directions in which waves may propagate and leave the domain.

3.5.1.2 Time Discretization

We consider solving the Helmholtz equation with c = 1 and constant exact solution

u(x) = 1, 0 ≤ x ≤ 1.

We take the frequency to be ω = 1 and consider Dirichlet boundary conditions. We discretize the

Laplacian with the standard three-point finite difference stencil and note that there is no error (aside

from truncation errors) in the solution by a direct solution of the discrete Helmholtz equation. We

use a centered modified equation timestepping scheme of both second and fourth order, with both

the original frequency and a modified frequency ω̃ with corresponding quadrature to remove time

discretization errors. We use the WaveHoltz iteration as a fixed-point iteration with a convergence

criterion that the relative L2 norm between successive iterations is smaller than 10−13.

Using the original frequency in the calculation, we see from Figure 3.4 that the WaveHoltz

solution converges to the discrete Helmholtz solution with the same order as that of the timestep

scheme used.
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Figure 3.4: Convergence of the discrete WaveHoltz solution to the true solution of the discrete

Helmholtz problem with fixed spatial discretization. Solid lines indicate relative errors between

discrete solutions. The blue and yellow solid lines indicate relative errors between the usual discrete

WaveHoltz solution and the true solution, and the red and purple solid lines indicate relative errors

for the frequency corrected solution.

With the modified frequency and quadrature, however, we see that the WaveHoltz iteration con-

verges to the discrete Helmholtz solution up to roundoff errors.

Remark 3.5.3. While only centered timestepping schemes are presented here, this approach can

be extended to arbitrary timesteppers. A careful discrete analysis of the iteration isolated to a

single eigenmode of the wave solution reveals what the modified frequency should be, and a modified

quadrature as outlined above removes the time discretization error from the converged WaveHoltz

solution. Thus, the choice of a timestepper need not need be restricted to have the same order as

the spatial discretization. With a corrected scheme it may be more advantageous to take as large a

timestep as possible with a low order timestepper.



85

3.5.1.3 Convergence Rate for Damped Helmholtz Equations

To study how the number of iterations scale with the Helmholtz frequency ω we solve the

wave equation on the domain x ∈ [−6, 6] with constant wave speed c2(x) = 1 and with a forcing

f(x) = ω2e−(ωx)2 ,

that results in the solution being O(1) for all ω. We discretize using the energy based DG method

discussed above and use upwind fluxes which adds a small amount of dissipation. We keep the

number of degrees of freedom per wave length fixed by letting the number of elements be 5dωe. We

always take the polynomial degree to be 7, the number of Taylor series terms in the timestepping

to be 6, and use WHI accelerated by GMRES without restarts.

We report the number of iterations it takes to reach a GMRES residual smaller than 10−10 for

the six possible combinations of Dirichlet, Neumann and impedance boundary conditions for 200

frequencies distributed evenly from 1 to 100. The results for three levels of damping are displayed

in Figure 3.5.
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Figure 3.5: Number of iterations as a function of ω for different boundary conditions and damping

parameters. Left: η = 1/2ω, Middle: η = 1/2, Right: η = ω/2. In the above legends each entry is

made up of a two letter string where the first letter indicates the boundary condition on the left

at x = −6, and the second letter indicates the boundary condition on the right at x = 6. Here D

indicates Dirichlet, N indicates Neumann, and I indicates impedance/Sommerfeld conditions.

On the left and middle of Figure 3.5 are damping parameters of 1/2ω and 1/2 respectively, from
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which it is clear that the scaling is sub-linear with increasing frequency. On the right in Figure

3.5 are results from a damping parameter that grows with frequency, ω/2, which demonstrates a

number of iterations that is both frequency independent and modest for a given GMRES tolerance.

Interestingly, in this case the curve for each set of boundary conditions collapses to the same curve

so that the iteration is insensitive to boundary conditions for a sufficiently large damping parameter.

Remark 3.5.4. As seen in the previous chapter, the impedance-impedance conditions take the

fewest iterations to reach convergence for lower levels of damping. We point out the preceeding

analysis assumes energy-conserving boundary conditions to obtain estimates on the convergence

rate of WaveHoltz as a fixed-point iteration. A different approach without the need for a Laplacian

with a point-spectrum is needed to obtain rates depending on the specific boundary conditions.

3.5.2 Examples in Two Dimensions

In this section we present experiments in two space dimensions. For the following examples,

we consider solving the Helmholtz equation for the wedge model which we adapt from [45, 95]. The

domain is the rectangle [0, 600]× [0, 1000] with the (discontinuous) speed of sound

c(x) =



c1 = 2100, y ≤ x/6 + 400,

c2 = 1000, x/6 + 400 ≤ y ≤ 800− x/3,

c3 = 2900, else.

The domain and mesh used for the examples is shown in Figure 3.6, where the blue region corre-

sponds to c1, the green region with c2, and the magenta region with c3.
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Figure 3.6: Computational domain where the mesh in blue corresponds to a wavespeed of c = 2100,

the mesh in green corresponds to a speed of c = 1000, and the magenta mesh with c = 2900. The

solid black line is not physical and is meant to more easily distinguish between regions.

On the boundary of the rectangle we impose the impedance boundary condition wt+c∇w·~n = 0. For

the spatial discretization we use the SIPDG method with a penalty parameter choice of γ = (p+1)2,

where p = 4 is the polynomial order used in each element which results in a fifth order method.

In time we use a fourth order Taylor method for timestepping. For each example, we use the

point-source

f(x, y) = ω2δ(|x− x0|)δ(|y − y0|),

where x0 = 300, y0 = 0, ω is the Helmholtz frequency, and δ(z) is the usual Dirac delta function.

These examples were implemented in the MFEM finite element discretization library [4].

3.5.2.1 Convergence for Damped Helmholtz Equations

We again study how the number of GMRES accelerated WHI iterations scale with the

Helmholtz frequency ω for the exemplary wedge problem.

We report the number of iterations it takes to reach a GMRES residual smaller than 10−10 for

the frequencies 1, 2, . . . , 100, with damping η = ω/2 with either impedance or Neumann conditions
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on all sides of the rectangular domain. The results for this experiment are shown in Figure 3.7,

from which it is clear that the number of iterations is essentially independent of frequency for larger

frequencies as was the case in a single spatial dimension.
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Figure 3.7: Number of iterations to reach a GMRES tolerance of 10−10 for the wedge problem in

2D with all Neumann or all impedance boundary conditions.

We again note that energy-conserving boundary conditions require more iterations than the impedance

case even in the presence of damping.

For a final example, in Figure 3.8 we display the solution of the damped (and undamped)

Helmholtz equation using the GMRES accelerated WHI for a frequency of ω = 40π with damping

η = ω/2 and 0, respectively.
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Figure 3.8: In the above we plot the log10 of the absolute value of the real part of the Helmholtz

solution with frequency ω = 40π for (Left) damping parameter η = 20π and (Right) no damping.

3.6 Summary and Future Work

We have presented and extended analysis of the WaveHoltz iteration, an iterative method for

solving the Helmholtz equation, applied to wave equations with and without damping. The general

iteration has the same rate of convergence as the energy-conserving case presented in [14], but is

a more general and appropriate formulation for considering problems with impedance/Sommerfeld

boundary conditions. For problems with damping, the WaveHoltz iteration always converges and

numerical experiments verify the frequency independent convergence of problems with sufficient

levels of damping.

We have provided analysis of the interior impedance problem in a single dimension and

constructed an example in which the worst-case convergence rate is realized, despite the numerical

results of the previous chapter indicating much more favorable scaling for non-energy conserving

boundary conditions.

Finally, here we have only considered acoustic wave propagation. In the following chapter we

will apply the WaveHoltz iteration to the elastic Helmholtz equation. Moreover, we have not yet

tried to leverage sweeping/domain decomposition ideas here and hope to study the numerical and
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theoretical properties of these in the future.



Chapter 4

El WaveHoltz Method

Time harmonic wave propagation problems are notoriously difficult to solve by direct or

iterative methods due to the resolution requirements and the indefinite nature of the differential

operator, especially at high frequencies. In acoustic media, a prototypical model of time harmonic

wave propagation is given by the (heterogeneous) Helmholtz equation

∇ · (c2(x)∇u) + ω2u = f(x), x ∈ Ω, (4.1)

for a domain Ω, frequency ω, and sound speed c2(x). The efficient solution of the Helmholtz

equation (4.1) via iterative methods is an active area of research with a variety of methods in both

the frequency and time domain. We refer to Chapter 2 for a more in-depth overview of the literature

on techniques for solving the Helmholtz equation, as well as the review articles [47, 50, 44].

For applications in solid mechanics, seismology and geophysics, however, it is more appro-

priate to consider the elastic wave equation instead of the acoustic wave equation. In contrast to

the literature for the acoustic case, fewer effective solvers and preconditioners are available for time

harmonic elastic waves governed by the elastic “Helmholtz” equation (also known as the Navier

equation)

ρω2v +∇ · T (v) = f(x), x ∈ Ω.

Here v ∈ Rd is the displacement vector and d the spatial dimension. The elastic wave equation

models both pressure and shear waves and, as is the case for the Helmholtz equation (4.1), the

above system of equations results in a discretization that is highly indefinite for large frequencies.
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As for any wave propagation problem the resolution must increase with the frequency, and here

the most stringent resolution constraint comes from the (shorter) shear wave wavelength. This, in

tandem with d times the number of unknowns leading to larger storage requirements, necessitates

parallel, memory lean, and scalable solvers that must be high order accurate to mitigate dispersive

errors, [75], causing the so-called pollution effect [16].

While most methods have traditionally focused on solving the Helmholtz equation in the

frequency domain (we provide a review of some of these below), an alternative approach is to instead

construct iterative solvers in the time domain. One such method, the so-called Controllability

Method (CM), was first proposed by Bristeau et al. [29] and has recently received renewed interest

in a series of papers by Grote [63, 85, 33]. The CM was extended to elastic media in [87]. The

unknown in the CM is the initial data to the wave equation. In the CM this initial data is adjusted

so that it produces an approximation to the Helmholtz equation by solving a constrained least-

squares minimization where the objective function measures the deviation from time-periodicity.

The minimization can be efficiently implemented using the conjugate gradient method, where the

gradient is computed by solving the adjoint wave equation backwards in time.

The method we present here is an extension of the WaveHoltz method introduced in [14]

for the scalar wave equation. As in the CM, the WaveHoltz iteration (and the Elastic version we

denote El WaveHoltz) iteratively updates the initial data to the wave equation but it does so by

filtering the wave equation solution over one period (or an integer number of periods). The filtered

solution is then used as the next initial data and thus the WaveHoltz method only requires one

wave solve per iteration while the CM requires two.

In [14] we show that the (linear) iteration is convergent in both the continuous and discretized

setting and that, if formulated as a linear system of equations, the underlying matrix is positive

definite. We also showed that for closed waveguides with energy conserving boundary conditions

(Dirichlet or Neumann) the matrix is also symmetric as long as the numerical method is symmetric.

We emphasize that the filter used in the WaveHoltz method is a bounded operator and

therefore the number of iterations (and the condition number of the problem) does not depend on
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the gridsize h. This is in contrast to methods that discretize and solve the PDE directly. Such

methods typically have a condition number that scales as h−2 which makes it increasingly difficult

to solve the problem as the solution becomes more accurate.

The analysis in [14] predicted that the WaveHoltz method in d dimensions converges to a fixed

tolerance in O(ωd) iterations for energy conserving problems and numerical experiments indicated

that it converges in O(ω) iterations for open problems. Numerical experiments also indicated that

some energy conserving examples may exhibit complexity closer to O(ωd−0.5) for d = 2 and 3. The

analytical predictions from [14] are expected to hold here as well and in the experiments we carry

out below we observe O(ωd). All these results and observations are independent of grid resolution

indicating that our method can be particularly suitable when accurate solutions are required.

In this chapter we focus solely on energy conserving boundary conditions (Dirichlet or normal

stress) and leave the cases of impedance and non-reflecting boundary conditions to future work. In

addition to introducing El WaveHoltz, we present several new results that are also retroactively ap-

plicable to our earlier work on WaveHoltz for the scalar wave equation [14] and Maxwell’s equations

[93].

First, for the energy conserving boundary conditions the continuous WaveHoltz operator

is symmetric positive definite. However, unless the semidiscretized wave equation has the form

utt = Lhu with Lh SPD the discrete WaveHoltz iteration will not result in a symmetric matrix.

We show that for schemes that are symmetric in a weighted inner product there is a simple scaling

that can be applied to make the discrete WaveHoltz method symmetric. This then allows the

conjugate gradient or the conjugate residual method to be used.

Following the ideas of Stolk [101] we introduce two new two-level time-stepping schemes – one

explicit and one implicit – that remove the time-stepping error from the WaveHoltz solution. When

either of these time-stepping methods are used the solution to the discrete WaveHoltz method is

identical to the solution obtained by directly discretizing the frequency domain equation.

For high frequency, large scale problems, parallel solution of the time harmonic elastic equa-

tions is the only feasible option. For a parallel solver to scale well the ratio of communication to
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computation should be small. In general, there are two types of communication: a) the local com-

munications between processors to exchange local degrees of freedom needed for stencil operations

in the discretization of spatial derivatives, and b) global all-to-all operations such as computing

the inner product between two global vectors. The WaveHoltz method has an intrinsic advantage

compared to methods that work directly with the frequency domain equation in that the all-to-all

communication that is required to update search directions in CG, GMRES etc. only needs to be

computed once per T = 2π/ω-period. Here we explore the effect of filtering over an additional

number of periods to further reduce the number of all-to-all communications.

We believe that the method we propose here is an alternative to previously proposed methods.

In particular, El WaveHoltz is easily implemented if an elastic wave equation solver is already

available. As we show in the numerical experiments section, El WaveHoltz can be one to two

orders of magnitude faster compared to an algebraic multigrid (AMG) preconditioned GMRES

solver for the frequency domain equation when using the symmetric interior penalty discontinuous

Galerkin implementation available in MFEM [4]. There are, of course, many other solvers available;

the question of which method will be most efficient will (most likely) depend on the details of the

problem to be solved. We now review some of the methods available in the literature.

One of the most common preconditioners for acoustic problems is the shifted Laplacian pre-

conditioner (SLP), a more thorough review of which can be found in the review article by Erlangga

[44]. Perhaps one of the first extensions of the damping preconditioner to elastic media was intro-

duced by Airaksinen et al. [3], in which a finite element spatial discretization for the damped op-

erator is inverted by AMG. A more traditional finite-difference multigrid SLP with line-relaxations

was considered by Rizzuti and Mulder [96]. For both of these previous approaches, the effectiveness

of a straightforward SLP is degraded for nearly incompressible media as the prolongation operators

struggle to approximate the nullspace of the grad-div operator. To address this, a more recent ex-

tension was done by Treister [102] in which a mixed-formulation of the elastic Helmholtz equation

is considered. While nearly incompressible media could be handled by the methods of [102], this

comes at the cost of doubling the number of unknowns as well as additional storage requirements
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for precomputing the inverse of relaxation operators.

Another important class of methods for the solution of the Helmholtz equation are domain

decomposition (DD) methods, for which we refer the reader to [50] for a review. In the short

article [30], it was shown that a classic Schwarz DD with overlap for elastic problems converges for

high frequencies, diverges for medium frequencies, and stagnates for small frequencies. Moreover,

overlapping DD as a preconditioner for a GMRES accelerated solver exhibits convergence behavior

that depends strongly on the frequency ω with degrading performance for increasing frequency.

To remedy this, Brunet et al. introduced more general transmission conditions at the boundaries

of overlapping domains in [31]. These transmission conditions, together with a sufficiently large

enough overlap, yield convergence of the DD method for all frequencies with the exception of

{ω/Cs, ω/Cp}, where Cs and Cp are the shear and pressure wave speeds, respectively.

For unbounded problems one of the most promising classes of preconditioners for the Helmholtz

equation are the so-called sweeping preconditioners by Engquist and Ying [40, 41]. These precondi-

tioners construct an LDLT decomposition by sweeping through the domain layer-by-layer, with the

key observation that the application of the Schur complement matrices found in the block diagonal

matrix D is equivalent to solving a quasi-1D(2D) problem in 2D(3D). In contrast to the acous-

tic case, however, the sweeping preconditioner for time harmonic elastic waves, [103], exhibited

an increase in the number of iterations with frequency for a heterogeneous media as the moving

perfectly matched layer (PML) does not approximate Green’s function as well. We note that the

stable construction of PML for many elastic problems is still considered an open question [21, 11].

Similar to the sweeping preconditioner, Belonosov et al. [22] construct a preconditioner in 3D with

damping that sweeps through the domain along a coordinate axis while additionally homogenizing

the medium in each layer. The preconditioner of [22] is inverted using FFT’s and is accelerated

with BiCGSTAB in the outer loop. As with the sweeping preconditioner, the choice of sweeping

direction is important. Thus for problems where heterogeneity is present in all directions this

preconditioner is less effective. Yet another solver with a sweeping nature is an extension of the

Gordon and Gordon [60] CARP-CG method for Helmholtz problems to elastic media [80]. Despite
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its simplicity this method requires a large number of iterations, especially for heterogeneous media

or problems with higher Poisson ratios. It should be emphasized that, although successful for un-

bounded problems, the efficiency of sweeping methods for energy conserving boundary conditions

has largely not been demonstrated and their parallel implementation remains cumbersome.

Instead of the LDLT decomposition used by the sweeping preconditioner, other approaches

constructing LU/ILU factorizations and preconditioners are available. In [37] an ILU precondi-

tioner based on wavelet transforms with Gibbs reordering is used in a GMRES accelerated solver

(with restarts) for time harmonic elastic waves. Wang et al. introduced a structured multifrontal

algorithm using nested dissection based domain decomposition, together with hierarchical semi-

separable (HSS) compression for frontal matrices with low off-diagonal ranks in [108]. The use

of multilevel sequentially semi-separable (MSSS) matrix structure of the discretized elastic wave

equation on Cartesian grids was leveraged in [19] inside of an induced dimension reduction (IDR)

accelerated ILU preconditioner. The drawback of LU/ILU methods for elastic Helmholtz problems

is the growth in memory and storage requirements.

The rest of this chapter is organized as follows. In Section 4.1 we present the elastic Helmholtz

and wave equations. In Section 4.2 we introduce the WaveHoltz iteration applied to elastic problems

with Dirichlet and/or free surface boundary conditions. In Section 4.3 we outline the numerical

methods used to solve the elastic wave equation and present new results on time-stepping and

Krylov acceleration. Numerical examples are presented in Section 4.4. Finally, we summarize and

conclude in Section 4.5.

4.1 Governing Equations

4.1.1 The Time Harmonic Elastic Wave Equation

For a linear isentropic elastic media the frequency domain equation is

ρω2v +∇ · T (v) = f(x), x ∈ Ω. (4.2)
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For notational convenience we will refer to this as the elastic Helmholtz or, when there is no

ambiguity, simply the Helmholtz equation. This equation can be obtained by making the ansatz

u(x, t) = eiωtv(x) and inserting it into the elastic wave equation (discussed below). We note that,

in general, the Helmholtz solution v is complex-valued. However, for boundary conditions that

conserve the energy (such as Dirichlet and conditions on the normal stress) the corresponding

elastic wave equation solution v becomes real-valued. For real-valued solutions, the ansatz then

simplifies to u(x, t) = cos(ωt)v(x). The El WaveHoltz method can be used to find the solution v

in both cases, but as we exclusively consider the energy conserving case here we primarily describe

the method for that case.

4.1.2 The Elastic Wave Equation

The linear elastic wave equation in an isentropic material described by the density ρ(x, t),

the Lamé parameters µ(x) > 0 and λ(x) > 0, and with a time harmonic forcing takes the form

ρutt = ∇ · T (u)− cos(ωt)f(x), x ∈ Ω, 0 ≤ t ≤ T. (4.3)

Here u = (u(x, t), v(x, t), w(x, t)) is the displacement vector, x = (x, y, z)T is the Cartesian coordi-

nate and t is time. The stress tensor T (u) can be decomposed into

T (u) = λ(∇ · u)I + 2µD(u), (4.4)

where D(u) is the symmetric part of the displacement gradient

D(u) =
1

2


2ux uy + vx uz + wx

uy + vx 2vy vz + wy

uz + wx vz + wy 2wz

 . (4.5)

The equation (4.3) is closed by boundary conditions specifying the displacement

u(x, t) = cos(ωt)g(x), x ∈ ∂ΩD, (4.6)

or the normal stress

T (u)n = cos(ωt)h(x), x ∈ ∂ΩS,
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along with initial conditions

u(x, 0) = u0(x),
∂u(x, 0)

∂t
= u1(x).

Multiplying (4.3) by uT , integrating over Ω and invoking the divergence theorem yields the

energy estimate

1

2

d

dt

(
‖
√

(ρ)ut‖2 +

∫
Ω
λ(∇ · u)I + 2µ(D : D)dx

)
= −

∫
Ω

cos(ωt)uT f(x)dx +

∫
∂Ω

uTt T (u)n dS.

(4.7)

Here n is the outward unit normal and the notation (A : B) =
∑d

i=1

∑d
j=1 ai,jbi,j is the standard

tensor contraction over two indices.

Thus, when there is no forcing, f(x) = 0, the energy is conserved in time as long as uTt T (u)n =

0 on the boundary ∂Ω. The condition T (u)n = 0 indicates that the boundary is stress free or free

of traction. The Dirichlet condition on the velocity ut = 0 also holds if the displacement vanishes

for all time on the boundary, i.e. u = 0.

Note that if the initial data, u0(x), gives rise to a solution of the form u(x, t) = cos(ωt)v(x)

then that solution coincides with the elastic Helmholtz solution to (4.2).

Remark 1. In the rest of this chapter, unless otherwise noted, we will assume that the equations

have been non-dimensionalized and that ρ = 1.

4.2 The El WaveHoltz Iteration

The El WaveHoltz iteration is a direct generalization of the WaveHoltz iteration introduced

and and analyzed in [14]. Precisely, if we consider the energy conserving case, applying the Wave-

Holtz operator component wise to the initial displacement vector u0 defines the El WaveHoltz

operator

Πu0 =
2

T

T∫
0

(
cos(ωt)− 1

4

)
u(x, t) dt. (4.8)

Here T = 2π
ω and u(x, t) is the solution to (4.3) with the initial data u0 (recall that for the energy

conserving case we always have u1 = ∂u(x, 0)/∂t = 0).
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As the analysis of this operator is the same as that for the scalar operator analyzed in [14], we

will not repeat the analysis in detail here. Instead, we now highlight its most important properties.

The first thing to note is that if u(x, t) = cos(ωt)v(x) (and thus u0(x) = v(x)), then the integral

in (4.8) can trivially be evaluated

Πv(x) =
2

T

T∫
0

(
cos(ωt)− 1

4

)
cos(ωt)v(x) dt = v(x), (4.9)

showing that the elastic Helmholtz solution is a fixed point of the operator. Further, if we let (λ2
j ,φj)

be the eigendecomposition satisfying λ2φj = ∇ · T (φj), then for a general initial displacement the

solution will be on the form
∑∞

j=0 dj cos(λjt)φj . Let

β(λ) ≡ 2

T

T∫
0

(
cos(ωt)− 1

4

)
cos(λt)dt.

Then as in [14] we can define the operator S as

S
∞∑
j=0

djφj ≡
∞∑
j=0

β(λj)djφj ,

which gives the filtered solution to the elastic wave equation when f = 0. If ω 6= λ then the spectral

radius max |β| < 1 (see Lemma 2.1 in [14]) so the iteration will converge. Since the operator

is linear, we may find the fixed point (or equivalently the elastic Helmholtz solution) by solving

the equation (I − S)v ≡ Av = b ≡ Π0. As is the case for the scalar Helmholtz equation, the

eigenvalues of A lie in (0, 3/2) and the condition number scales with the frequency as cond(A) ∼ ω2d

in d dimensions.

We emphasize that here A is a self-adjoint, positive definite and bounded operator. Thus

once A is discretized it will be possible to apply the conjugate gradient method. Moreover, as

the condition number does not depend on the discretization size, the number of iterations are not

expected to increase as the solution becomes more accurate due to grid refinement. We also note

that since cond(A) ∼ ω2d the conjugate gradient method is expected to converge to a fixed tolerance

in ωd iterations.
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Finally, as mentioned above it is possible to define the iteration as the integral over multiple

periods in order to reduce the number of all-to-all communication in the Krylov iteration. For

example, if the number of periods is K then we can define the filtering as

ΠKu0 =
2

KT

KT∫
0

(
cos(ωt)− 1

4

)
u dt, T =

2π

ω
. (4.10)

Remark 2. For general boundary conditions (e.g. non-reflecting or impedance), u(x,0)
∂t = u1(x)

will not be zero and we must seek the initial data u0 and u1 simultaneously. The El WaveHoltz

operator then is

Π

u0

u1

 =
2

T

T∫
0

(
cos(ωt)− 1

4

)u

ut

 dt, T =
2π

ω
.

This operator is more difficult to analyze [51] but in practice the iteration converges much

faster, typically in ∼ ω iterations independent of dimension.

4.3 Numerical Methods and Discrete Analysis

An attractive feature of El WaveHoltz is that it can be used together with any convergent

discretization of the elastic wave equation. Here we consider the conservative curvilinear finite

difference method from [12] and the symmetric interior penalty discontinuous Galerkin method

[35, 62]. We give a very brief description of these below methods and refer the reader to [12, 35]

for details.

Although highly non-intrusive, the one additional discretizational detail necessitated by El

WaveHoltz is how to discretize the integral in (4.8). As the integrand is periodic (once converged)

we always use the trapezoidal rule.

4.3.1 El WaveHoltz by Finite Differences

To discretize the elastic wave equation (4.1.2) in a general non-Cartesian geometry we write

(4.1.2) in a curvilinear coordinate system that conforms with the boundaries of the domain but

that can be mapped back to the unit square (cube). Thus, we assume that there is a one-to-one
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mapping

x = x(q, r), y = y(q, r), (q, r) ∈ [0, 1]2,

from the unit square to the domain of interest. Then the two dimensional version of (4.1.2) becomes

Jρ
∂2u

∂t2
=

∂

∂q

[
Jqx
[

(2µ+ λ) (qx∂q + rx∂r)u+ λ (qy∂q + ry∂r) v
]

+ Jqy
[
µ ((qx∂q + rx∂r) v + (qy∂q + ry∂r)u)

]]
+

∂

∂r

[
Jrx

[
(2µ+ λ) (qx∂q + rx∂r)u+ λ (qy∂q + ry∂r) v

]
+ Jry

[
µ ((qx∂q + rx∂r) v + (qy∂q + ry∂r)u)

]]
,

Jρ
∂2v

∂t2
=

∂

∂q

[
Jqx
[
µ ((qx∂q + rx∂r) v + (qy∂q + ry∂r)u)

]
+ Jqy

[
(2µ+ λ) (qy∂q + ry∂r) v + λ (qx∂q + rx∂r)u

]]
+

∂

∂r

[
Jrx

[
µ ((qx∂q + rx∂r) v + (qy∂q + ry∂r)u)

]
+ Jry

[
(2µ+ λ) (qy∂q + ry∂r) v + λ (qx∂q + rx∂r)u

]]
.

Here J = xqyr − xryq is the Jacobian of the mapping. Also note that we have considered the case

without forcing for brevity.

We discretize the unit square (q, r) ∈ [0, 1]2 by a uniform grid on which we introduce real

valued grid functions [ui,j(t), vi,j(t)] = [u(qi, rj , t), v(qi, rj , t)]. On this grid we apply the an energy

stable discretization

ρJ
∂2uh
∂t2

= L(u)(uh, vh), ρJ
∂2vh
∂t2

= L(v)(uh, vh). (4.11)

Here ρJ is a diagonal matrix containing the metric information and uh, vh are vectors containing all

the grid function values. The (lengthy) exact definitions of L(u)(uh, vh), L(v)(uh, vh) can be found

in [12].

Suppose we are to impose a free surface boundary condition at q = 0. We then use a modified

stencil for which the method is stable in a modified inner product. Let wh and uh be real valued
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grid functions and (wh, uh)h be the discrete inner product

(wh, uh)h = hqhr

Nr∑
j=1

1

2
w1,ju1,j +

Nq∑
i=2

wi,jui,j

 ,

with corresponding norm ‖wh‖2h = (wh, wh)h. In this inner product, the discretization (of the PDE

and boundary conditions) is self adjoint. That is, for all real-valued grid functions (u∗, v∗), (u†, v†)

satisfying the discrete boundary conditions, we have

(u∗, L(u)(u†, v†))h + (v∗, L(v)(u†, v†))h = (u†, L(u)(u∗, v∗))h + (v†, L(v)(u∗, v∗))h. (4.12)

To discretize the equations in time we either use the standard second order accurate centered

differences, or one of the time-corrected schemes discussed below. For the standard second order

accurate centered difference approximation in time, the fully discrete equations take the form

(ρJ)(un+1
h − 2unh + un−1

h ) = ∆t2L(u)(unh, v
n
h),

(ρJ)(vn+1
h − 2vnh + vn−1

h ) = ∆t2L(v)(unh, v
n
h).

(4.13)

Then, if (u, v)ρJ is the weighted inner product defined by (f, (ρJ)−1 g)ρJ = (f, g)h, and Ce(t
n+1) is

the discrete energy

Ce(t
n+1) = ‖Dt

+u
n‖2ρJ + ‖Dt

+v
n‖2ρJ − (un+1, (ρJ)−1L(u)(un, vn))ρJ − (vn+1, (ρJ)−1L(v)(un, vn))ρJ ,

(4.14)

one can show that this discrete energy is conserved [12].

Note that (4.13) is slightly non-symmetric and needs to be diagonally scaled to become

symmetric. Here we scale by 2 along sides with free surface boundary conditions, and by 4 in

corners where free surfaces meet. Incorporating this scaling through the multiplication by a scaling

matrix Λ, the method can be formally written as

M(un+1
h − 2unh + un−1

h ) = ∆t2Lhuh. (4.15)

Here M = diag(ΛρJ,ΛρJ) and Lh = diag(ΛL(u),ΛL(v)) are symmetric and M is diagonal. However,

as M−1Lh is not in general symmetric, the iteration (4.8) will produce a symmetrizable but not
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symmetric operator. We will show below that this necessitates a minor modification of the conjugate

gradient algorithm when used together with the iteration (4.8).

Remark 3. Here we only consider domains that can be discretized by a single logically Cartesian

grid, but note that by using the overset grid version of the method, [7], more complex geometry

could be handled.

4.3.2 El WaveHoltz by Symmetric Interior Penalty Discontinuous Galerkin Method

As an alternative to the finite difference method outlined above, we will also consider the

Symmetric Interior Penalty Discontinuous Galerkin (SIPDG) method [35, 62]. Let Ωh be a finite

element partition of the computational domain Ω, with Γh the set of all faces. Then (4.3) can be

reformulated into the interior-penalty weak formulation: Find uh ∈ (0, T )× Vh such that

∑
E∈Ωh

(ρ
d2uh
dt2

,v)E +
∑
E∈Ωh

BE(uh,v) +
∑
γ∈Γh

Jγ(uh,v;S,R) = − cos(ωt)
∑
E∈Ωh

(f,v)E , (4.16)

for all v ∈ Vh. Here

(u,v)E =

∫
E

u · v dE,

BE(u,v) =

∫
E

[
λ(∇ · u)(∇ · v) + µ(∇u +∇uT ) : ∇v

]
dE,

Jγ(u,v;S,R) = −
∫
γ
{T (u)n} · [v] dγ + S

∫
γ
{T (v)n} · [u] dγ +R

∫
γ
{λ+ 2µ}[u] · [v] dγ,

where {·} and [·] denote the average and jump of a function, respectively. The parameter R is the

penalty and S determines the particular flavor of IPDG. We thus set S = −1, corresponding to

the Symmetric IPDG [62]. In this case, Jγ is symmetric with respect to uh and v so that together

with the symmetry of BE we have that the stiffness matrix is symmetric. Thus SIPDG provides a

symmetric discretization of the elastic wave equation, which will allow the use of conjugate gradient

to accelerate convergence of the El WaveHoltz iteration.

Our solver is implemented in MFEM1 [4] and is essentially a direct extension of example 17

to the time domain. Depending on the mesh, our choice of finite element space Vh is typically one

1 www.mfem.org
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of two broken spaces. We choose either Pp(E), the space of polynomials of total degree at most

p on triangles, or Qp(E), the space of polynomials of at most degree p on quadrilaterals. Unless

otherwise noted, for the penalty parameter we make the choice R = (p+ 1)(p+ 2).

With the standard second order explicit time discretization, the matrix form of (4.16) becomes

Mρ(u
n+1
h − 2unh + un−1

h ) = ∆t2
[
Lhu

n
h − cos(ωtn)̂f

]
.

As for the finite difference method, M−1
ρ Lh is not (in general) symmetric and this will necessitate

a minor modification of the conjugate gradient algorithm when this scheme is used together with

the iteration (4.8).

For this explicit time-stepping and the error corrected time-stepping discussed below, we use

the CFL condition from [10]

∆t <
CFL · hmin

(p+ 3
2)2
√

2µ+λ
ρ

, (4.17)

where hmin is the smallest diameter of the elements and CFL depends on the time-stepper. For the

second order centered scheme, we typically choose CFL ∼ 0.4–0.8.

4.3.3 Explicit Time-Corrected Scheme

If the elastic Helmholtz equation equation (4.2) is discretized directly, the solution satisfies

the equation (in this section we take ρ = 1 and for notational clarity we suppress the subscript h)

ω2v + Lhv = f(x). (4.18)

As we show in [14, 51], when the elastic wave equation is time marched with e.g. the second

order method

un+1 − 2un + un−1 = ∆t2 [Lhu
n − cos(ωtn) f] , (4.19)

started with the initial data

u0 = u0, u−1 = u0 −
∆t2

2
Lh (u0 + f) .
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Once El WaveHoltz has converged the initial data u0 satisfies the elastic Helmholtz equation with

a modified frequency

ω̃2u0(x) + Lhu0(x) = f(x), ω̃ =
2 sin(∆tω/2)

∆t
. (4.20)

For this second order time discretization the difference between the final converged u0 and v is

O(∆t2). Thus if a high order accurate spatial discretization is used, time discretization errors will

limit the accuracy of the El WaveHoltz solution. To reduce this error, a time discretization which

is at least as accurate as the spatial discretization can be used. It is also possible, however, to

use the technique proposed by Stolk in [101] to modify the second order time-stepping method

and eliminate the error altogether. The corrected scheme in [101], introduced as a time domain

preconditioner, is the straightforward modification

un+1 − 2un + un−1 =
ω̃2

ω2
∆t2 [Lhu

n − cos(ωtn) f] . (4.21)

As [101] solves the equations in the frequency domain no initial data is needed. Here, as we work

in the time domain, we must also modify the computation of u0 accordingly:

u0 = u0, u−1 = u0 −
ω̃2

ω2

∆t2

2
Lh (u0 + f) .

4.3.4 Implicit Time-Corrected Scheme

For a DG discretization, the use of an explicit time-stepping scheme for the elastic wave

equation requires a CFL condition that shrinks as O(p−2) where p is the polynomial order within

an element. For meshes with geometrical stiffness and DG discretizations of high order, it is then

particularly desirable to consider the use of an implicit scheme to circumvent a potentially restrictive

time-step size demanded by an explicit scheme.

To that end, consider the semi-discrete system

ρutt = Lhu− cos(ωt)f(x), x ∈ Ω, t ≥ 0, (4.22)

where Lh is a symmetric, positive definite approximation to the continuous operator ∇·T including

boundary conditions. The values ∇ · T (u) are then approximated by Lhu. We assume Lh has the
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eigenmodes (λ2
j ,φj), such that Lhφj = λ2

jφj for j = 1, . . . , N , where all λj are strictly positive and

ordered as 0 ≤ λ1 ≤ · · · ≤ λN .

We let the discrete Helmholtz solution v be given by

−Lhv + ω2v = f.

The numerical approximation of the iteration operator is denoted Πh, and it is implemented as

follows. Given a grid function u ∈ RN , we use the following implicit time-stepping scheme to solve

the elastic wave equation as

un+1 − αun + un−1

∆t2
=

1

2
Lh(un+1 + un−1)− f cos(ωtn) cos(ω∆t), (4.23)

where

α = cos(ω∆t)(2 + ω2∆t2) ≈ 2− 5(ω∆t)4

12
+O(∆t6). (4.24)

For the stability of the method it is necessary to have |α| < 2. This choice of the time-step corre-

sponds to a (mild) requirement of at least five time-steps per iteration (See details in Appendix .10).

With a time-step ∆t = T/k for some integer k, the scheme (4.23) is completed by initial data

u0 = u0, u−1 =

(
I − ∆t2

2
Lh

)−1(
α

2
u0 −

∆t2

2
cos(ω∆t)f

)
.

The trapezoidal rule is then used to compute Πhu,

Πhu =
2∆t

T

M∑
n=0

ηn

(
cos(ωtn)− 1

4

)
un, ηn =


1
2 , n = 0 or n = M,

1, 0 < n < M.

(4.25)

Define the discrete filter transfer function by

βh(λ) =
2∆t

T

M∑
n=0

ηn cos(λtn)

(
cos(ωtn)− 1

4

)
,

In Appendix .11 we motivate the following Conjecture (we believe this can be proved but at the

time of writing we have not yet done so.)
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Conjecture 1. Let ∆t = T/k for some integer k with T = 2π/ω. The discrete filter transfer

function βh satisfies 
|βh(λ)| ≥ 1, λ ∈ [ω(1− 0.022 ·∆t2), ω],

|βh(λ)| < 1, otherwise.

Under the assumption that Conjecture 1 holds we may then prove the following theorem.

Theorem 1. Suppose there are no resonances, such that δh = minj |λj − ω|/ω > 0. Moreover,

assume that ∆t satisfies the stability and accuracy requirements

|α|
2

= | cos(ω∆t)(1 + ω2∆t2/2)| < 1, ∆t ≤ cos(2π/5)ω2δh
0.044 · (1 + 2(πλN/5)2)

. (4.26)

Further assume that the properties of the discrete filter transfer function in Conjecture 1 hold. Then

the fixed point iteration v(k+1) = Πhv
(k) with v(0) = 0 converges to v which is a solution to the

discretized Helmholtz equation

−Lhv + ω2v = f.

Proof. We expand all functions in eigenmodes of Lh,

un =

N∑
j=1

ûnjφj , f =

N∑
j=1

f̂jφj , v =

N∑
j=1

v̂jφj .

Then the Helmholtz eigenmodes of v satisfy

v̂j =
f̂j

ω2 − λ2
j

.

The wave solution eigenmodes are given by the difference equation(
1 +

∆t2

2
λ2
j

)
ûn+1
j − αûnj +

(
1 +

∆t2

2
λ2
j

)
ûn−1
j = −∆t2f̂j cos(ωtn) cos(ω∆t), (4.27)

with initial data

û0
j = û0,j , û−1

j =

(
1 +

∆t2

2
λ2
j

)−1(
α

2
û1,j −

1

2
∆t2 cos(ω∆t)f̂j

)
.
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By (4.26), ∣∣∣∣∣α
(

1 +
∆t2

2
λ2
j

)−1
∣∣∣∣∣ =

∣∣∣∣∣2 cos(ω∆t)
2 + ∆t2ω2

2 + ∆t2λ2
j

∣∣∣∣∣ < 2,

so that the characteristic polynomial for the equation, r2−α(1+∆t2λ2
j/2)−1r+1, has two roots on

the boundary of the unit circle. The solution is therefore stable and is given by (with a verification

in Appendix .9)

ûnj = (û0,j − v̂j) cos(λ̃jtn) + v̂j cos(ωtn), (4.28)

where λ̃j is defined by the relation

cos(λ̃j∆t) =
α

2

(
1 +

∆t2

2
λ2
j

)−1

= cos(ω∆t)

(
1 +

ω2∆t2

2

)(
1 +

∆t2

2
λ2
j

)−1

. (4.29)

Now, let

Πhu0 =
∞∑
j=1

ūjφj .

Then the numerical integration gives

ūj =
2∆t

T

M∑
n=0

ηn

(
cos(ωtn)− 1

4

)(
(û0,j − v̂j) cos(λ̃jtn) + v̂j cos(ωtn)

)
= (û0,j − v̂j)βh(λ̃j) + v̂jβh(ω)

= û0,jβh(λ̃j) + (1− βh(λ̃j))v̂j .

Here we used the fact that the trapezoidal rule is exact, and equal to one, when λ = ω. (Recall

that for periodic functions the trapezoidal rule is exact for all pure trigonometric functions of order

less than the number of grid points.)

For the time-step restriction (4.26), we have that |λ̃j − ω| > 0.022 · ∆t2 so that the bound

|βh(λ̃j)| ≤ ρh < 1 in the conjecture is uniform for all j. It follows that v(k) → v. This concludes

the proof of the theorem.

Remark 4. We remark that it is also possible to remove the time discretization error by modifying

the weights in the trapezoidal rule as in [93]

2∆t

T

Nt∑
n=0

cos(ωtn)

cos(2 sin(∆tω/2)
∆t tn)

(
cos(ωtn)− 1

4

)
un. (4.30)
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It should however be noted that there is a risk that the denominator in this expression can become

arbitrarily close to zero unless care is taken.

4.3.5 Krylov Solution of the El WaveHoltz Iteration

Let Πh be the matrix corresponding to a discretization of the El WaveHoltz method using

either the finite difference or the SIPDG method. Then the iteration is (in this section a superscript

i denotes iteration and a superscript n denotes time-step)

u0
h = Πh0,

ui+1
h = Πhu

i
h, i = 0, 1, . . .

The solution to this fixed point iteration can also be found by solving

(I −Πh)uh = b ≡ Πh0, (4.31)

where the action of the matrix (I − Πh) requires (4.3) with f = 0 to be solved for one period,

T = 2π/ω, and the right hand side is pre computed by solving (4.3) with the f at hand.

Let Q = I − Πh. We know from [14] that the eigenvalues of Q are in the interval (0, 3/2) so

that Q is positive definite. We note that the methods for the elastic wave equation we consider here

produce solutions {u1,u2, . . . ,uNt} at time instances 0,∆t, 2∆t, . . ., according to the recursion

u0 = a0u + a1M
−1Sun, (4.32)

u1 = u (4.33)

un+1 = κun − un−1 + γM−1Sun. (4.34)

It follows that the matrix

Qu =

Nt∑
n=1

αiu
n, (4.35)

will not be symmetric even if M and S are.

However, as the operator Q can be expressed as a polynomial PQ of degree Nt− 1 in M−1S,

we have that MQ is symmetric. Thus rather than applying the conjugate gradient method to
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(4.31), we instead solve

M(I −Πh)uh = Mb. (4.36)

We note that the main cost of applying the matrix Q is in computing Πhuh. Since the matrix M

is diagonal for the finite difference method and block-diagonal for SIPDG, the difference in cost

between applying (4.36) over (4.31) is negligible compared to the advantage of not having to store

a Krylov subspace when using the conjugate gradient or conjugate residual method.

Remark 5. In some of the experiments below we use conjugate residual rather than conjugate

gradient. The reason for this is that it has the property that the residual is non-increasing, which

we have found gives a predictable and robust iteration count when doing parameter sweeps over ω.

When conjugate gradient is used we sometimes observe that the we get “lucky” and converge in very

few iterations for a few frequencies. When considering practical applications it is of course good to

have such luck, but as we are trying to present the average behavior of our method here we prefer

conjugate residual.

4.4 Numerical Experiments

In this section we present numerical experiments that demonstrate the properties of the

method. We start with numerical experiments that demonstrate the spatial accuracy with and with-

out the time-stepping correction for the finite difference and the discontinuous Galerkin method.

4.4.1 Accuracy of the Finite Difference Method

We consider solving the elastic Helmholtz equation with Lamé parameters λ = µ = 1.0,

where the forcing function is chosen so that the displacements are given by

u = v = 162x2(x− 1)2y2(y − 1)2. (4.37)

We take the frequency to be ω = 1.0 and enforce Dirichlet boundary conditions on the boundary

of the unit square (x, y) ∈ [0, 1] × [0, 1]. To verify accuracy, we set the tolerance to 10−15 in the
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n L1 error Convergence L2 error Convergence L∞ error Convergence

20 3.86(-3) - 3.86(-3) - 3.86(-3) -
40 9.21(-4) 2.06 9.21(-4) 2.06 9.21(-4) 2.06
80 2.25(-4) 2.03 2.25(-4) 2.03 2.25(-4) 2.03
160 5.55(-5) 2.02 5.55e(-5) 2.02 5.55(-5) 2.02

Table 4.1: L1, L2 and L∞ errors of the computed solution with corresponding estimated rates of
convergence.

conjugate residual method as the stopping criteria and compute the error in u to the exact solution.

We use the finite difference method together with the standard explicit second order time-stepping

scheme, and verify the convergence of the method by grid refinement. To that end, we choose the

coarsest grid to have n = 20 points along each direction and refine by a factor of two up to n = 160

points per direction. In Table 4.1 we estimate the rate of convergence and observe second order

convergence, as expected.

4.4.2 Verification of Corrected Time-Steppers

We consider solving the elastic Helmholtz equation with λ = µ = 1.0 and choose the forcing so

that the exact solution is the same as (4.37). We take the frequency ω = 1 and enforce homogeneous

Dirichlet conditions on the boundary of the square (x, y) ∈ [0, 1]× [0, 1]. As the solution is a fourth

order polynomial, choosing p = 4 should ensure that the solution to the discrete elastic Helmholtz

equation is precisely (4.37). We use the conjugate gradient accelerated version of El WaveHoltz

with the corrected second order centered time-stepping scheme presented in Section 4.3.3.

We partition the domain into four quadrilaterals of equal side length h = 0.5, set the absolute

conjugate gradient residual tolerance to 10−15, and consider the error as the time-step size is

decreased. We see from Figure 4.1 that the standard centered scheme leads to a discrete solution

that converges to the true solution to second order.
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Figure 4.1: (Left) Convergence of the discrete WaveHoltz solution to the true solution of the discrete

Helmholtz problem. (Right) Convergence of the discrete WaveHoltz solution to the true solution

of the discrete Helmholtz problem for a manufactured solution.

The modified scheme, however, maintains the same relative error to the true solution independent

of time-step size which indicates that (aside from roundoff errors) the time-stepping errors have

been removed. For the remaining numerical examples we use the modified time-stepping scheme

to remove time discretization errors.

4.4.3 Accuracy of the Symmetric Interior Penalty Discontinuous Galerkin Method

Next we verify the rates of convergence for our symmetric interior penalty DG solver and

for non-homogeneous problems using an example taken from [10]. We consider the unit square

S = [0, 1]2 and impose Dirichlet conditions on the boundary. The boundary conditions and forcing

are chosen so that the Helmholtz solution is

u(x, y) = sin(kxx+ x0) sin(kyy + y0),

v(x, y) = − sin(kxx+ x0) sin(kyy + y0),

where kx = 2.5π, kx = 2π, x0 = 5, y0 = −10. The mesh used is a uniform discretization of the unit

square split into smaller squares of side-length h = 1/2n for n = 1, . . . , 6.
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We set ω = 1 and choose the material parameters to be the constants µ = 1, λ = 2. Here we

use the modified time-stepping scheme of Section 4.3.3 with CFL = 0.4. The errors are plotted in

Figure 4.1 as a function of the grid size h. We additionally display estimated rates of convergence

calculated using linear least squares in Table 4.2 from which it is clear that the WaveHoltz method

converges with optimal rates with the error corrected time-stepper (which is formally only second

order accurate in ∆t).

p 1 2 3 4 5 6 7 8

1.84 2.94 4.00 4.94 6.01 6.86 8.07 8.64

Table 4.2: Estimated rates of convergence for the spatial discretization.

4.4.4 Effects on Number of Iterations from Number of Periods and Accuracy

In this section we investigate the efficiency of the filter (4.10), defined over K periods, for

various values of K. Let NT be the number of time-steps for one period. Then we expect the

reduction in the number of all-to-all communications to be KNT when compared to a direct dis-

cretization of (4.1.1). Here we consider energy conserving boundary conditions, for which we can

use the conjugate gradient method and avoid the need to store a Krylov subspace. We note that

for problems with impedance or non-reflecting boundary conditions (or with lower order damping

terms), El WaveHoltz will still result in a positive definite but non-symmetric system which can be

solved e.g. with GMRES. In that case, we also expect that the size of the GMRES Krylov subspace

will decrease by a factor KNT compared to direct discretization, and by a factor K compared to

using a single period for the filter procedure.

With these obvious advantages of filtering over K periods, it is natural to ask how the number

of iterations are affected by the increased filter time. In this experiment we numerically investigate

this. To do so, we use the corrected explicit version of the DG solver and consider the shaking of

a bar of (unitless) length 8 and height 1. We impose free surface boundary conditions on the top,
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bottom, and right of the domain, and on the left we set the boundary conditions to be

u(0, y, t) = v(0, y, t) = cos(ωt).

The base computational mesh uses 8 square elements each with side length 1, which we uniformly

refine by dividing each element in 4 parts for some number of refinements. We set λ = 2, µ = 1,

ω = 5.123 and CFL = 0.8. We consider 2 cases: Case 1 uses p = 5 and refines the base grid 3 times,

Case 2 uses p = 15 and refines one time. For both cases we use conjugate gradient and count the

number of iterations it takes to reduce the relative residual by a factor 10−10. The solution, along

with the components of the stress tensor σxx, σxy and σyy, are displayed in Figure 4.2.

Figure 4.2: From top to bottom: displacement magnitude, σxx, σxy and σyy. The domain is

[0, 8]× [0, 1] and the color scales are [0, 8], [−50, 50], [−15, 15] and [−40, 40] respectively.

The number of iteration for the two cases and the relative efficiency are tabulated in Table 4.3.
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Periods 1 2 3 4 5 10

Case 1 (#iter) 124 69 51 43 39 28
Efficiency 1 0.90 0.81 0.72 0.64 0.44

Case 2 (#iter) 151 96 78 68 62 53
Efficiency 1 0.79 0.65 0.56 0.49 0.29

Table 4.3: The table displays the number of iterations required and the efficiency of the longer

times to reduce the relative residual by a factor 10−10 for the two cases (described in the text).

As can be seen, the efficiency is relatively high when the number of periods are small and can thus

be deployed if the all-to-all communications (or the size of a GMRES Krylov space) becomes a

limiting factor.

4.4.5 Iteration Count as a Function of Frequency for Rectangles and Annular

Sectors

For energy conserving boundary conditions, the theoretical prediction (which is also observed

experimentally) is that the number of iterations scales as ωd in d-dimensions. In this and the

next section, we study how the number of iterations depends on the frequency in two and three

dimensions. In this section we additionally investigate the dependence of the number of iterations on

frequency for different geometries. Here, we study these properties via three different computational

domains: a rectangle, a quarter annulus, and a half annulus (all with a characteristic length of 5).

We use the finite difference method together with the standard explicit second order time-stepping

scheme. For each of the geometries we consider the set of frequencies ω = k +
√

2/10, with

k = 3, 4, . . . , 40.

Let q and r be the coordinates in the (reference) unit square. We set nq and nr to be the

number of cells in each coordinate direction. The (spatial) step size is given by hq = 1/nq and

hr = 1/nr, and our grid on the unit square is given by

qi = ihq, i = 0, . . . , nq, rj = jhr, j = 0, . . . , nr.
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We set the arc length of the outer arc at radii rout of the annular sector to be the length, L = 5.

Thus for the quarter annulus we have rout = 2L
π , and for the half-annulus we have rout = L

π . For

both cases, we take rin = rout − 1. Precisely, the coordinates of the two grids used for the quarter

annular sector and the half annular sector are

xij = (rin + (rout − rin)qi) cos
(
nan

π

2
rj −

π

2

)
,

yij = (rin + (rout − rin)qi) sin
(
nan

π

2
rj −

π

2

)
.

Here nan is either 1 or 2 to indicate the quarter or half annulus, respectively. We set nr =

4Lω + 1, nq = 4ω + 1 so that the number of points per shear wavelength is around 20.

For the forcing we use a discrete approximation of the delta function with amplitude ω2 cos(ωt).

We locate this point source at (xi∗j∗ , yi∗j∗) where i∗ = j∗ = (nq+1)/2 so that it is close to (0.5, 0.5)

in physical space. In Figure 4.3 we display the number of iterations required to reduce the relative

residual in the conjugate residual method by a factor 10−8.
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Figure 4.3: The number of iterations as a function of frequency to reach convergence for (Left) a

rectangle, quarter circle and half circle, and (Right) the unit cube with Dirichlet or free surface

conditions.

From Figure 4.3 we see that the results for the three geometries are very similar, indicating that

(in this example at least) the geometry has little to no effect on the number of iterations needed.
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Moreover the number of iterations grow as ω2, as expected.

4.4.6 Effect of Boundary Conditions in A Cube

In this experiment we consider the unit cube with either Dirichlet boundary conditions on

all sides, or with free surface boundary conditions on the top and bottom (z = 0 and z = 1) with

Dirichlet boundary conditions on all other sides. We use the 3D version of the finite difference

method described above with the standard explicit time-stepping method. Here we use the forcing

fj(x, t) = Aje
−σ

2
‖x−xj‖2 ,

with Aj ∼
√
σd and with σ ∼ ω so that each of the components of the forcing approaches a delta

function as ω grows. We select xj sightly different for each j so that both ∇× f 6= 0 and ∇ · f 6= 0,

resulting in a solution with both shear and pressure waves.

We use the conjugate residual method, keep the product hω = 0.4 fixed, and report the

number of iterations required to reduce the initial residual (starting from zero initial data) by a

factor 10−9. The result, which can be found in Figure 4.3, confirm the prediction from [14] that

the number of iterations scale as ω3.

4.4.7 Iteration Count as a Function of Wave Speed Ratio

The length of a domain, when measured in number of wavelengths, will increase both if the

physical domain size is increased and if the wave speed is reduced. The compressional and shear

wave speeds are Cp =
√

(2µ+ λ)/ρ and Cs =
√
µ/ρ, respectively. We expect that the number of

iterations will depend on the smallest wave speed, but for El WaveHoltz there is no intuitive reason

to think that a problem with Cp � Cs should be more difficult than a problem with Cp ≈ Cs. We

note, however, that such behavior has been reported in the literature (see e.g. Table 3.1 on page

11 of [102]) for other methods.

To experimentally investigate how well El WaveHoltz works for different combinations of µ

and λ, we use the SIPDG solver with the corrected explicit time-stepper for a geometry consisting
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of the unit square with a circular hole cut out (see Figure 4.4).

Figure 4.4: From top left to bottom right: displacement magnitude, σxy, σxx and σyy.

This is the mesh square-disc-nurbs.mesh, which is part of the MFEM distribution. The Lamé

parameters are constant in space and we choose the number of refinements so that the solution is

well resolved (the largest and smallest element size is reported in Table 4.4).
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λ 1 2 4 8 16 32 64 1 1

µ 1 1 1 1 1 1 1 1/4 1/16

hmax × 102 3.37 3.37 3.37 3.37 3.37 3.37 3.37 1.10 0.852

hmin × 102 2.25 2.25 2.25 2.25 2.25 2.25 2.25 1.70 0.547

#Iter. 45 47 35 38 38 56 44 126 247

#Iter. ×√µ 45 47 35 38 38 56 44 63 62

Table 4.4: The effect on iteration count depending on different combinations of λ and µ.

We impose the boundary conditions

u(0, y, t) = v(0, y, t) = cos(ωt),

on the outer part of the domain, and let the circular hole be free of traction. For all experiments

we set ω = 25.12, CFL = 0.8 and we evolve the El WaveHoltz iteration over K = 3 periods. We

stop the CG iteration when the relative residual falls below 10−6. In Figure 4.4 we display the

magnitude of the displacement and the components of the stress tensor σxy, σxx and σyy for the

case when λ = 1 and µ = 1/16.

The results, displayed in Table 4.4, show that El WaveHoltz appears to be robust with respect

to the ratio between λ and µ. Moreover, the number of iterations to reach the desired tolerance is

primarily a function of the µ, or equivalently, the shear wave speed Cs.

4.4.8 Comparison of Explicit and Implicit El WaveHoltz with Direct Discretization

of Elastic Helmholtz

In this example we compare the explicit error corrected SIPDG method, the implicit error

corrected SIPDG method and the SIPDG method of example17p extended to the elastic Helmholtz

problem (4.2). In this section we will refer to these solvers by the abbreviations WH, IWH and

HH respectively. For the Helmholtz SIPDG solver we use GMRES preconditioned by the AMG

solver provided by HypreBoomerAMG, with the elasticity specific options (see also [17]) provided by

SetElasticityOptions. The GMRES solver is restarted every 100 iterations.

For the implicit solver we must also invert the elasticity operator (but with a shift that
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preserves its positive definiteness) and we do this by CG preconditioned by the same AMG setup

as for the Helmholtz SIPDG solver. We always use 10 time-steps for the implicit solver, and for the

explicit solver we use CFL = 1.1. For the WH and IWH solver we solve the El WaveHoltz problem

with conjugate gradient. For all three solvers the tolerance is set to be 10−10.

We solve the equations on the unit square with a smooth (but narrow) forcing

f = −200ω2

π
e−1.2ω2[(x−0.25)2+(y−0.25)2]

 −y + 0.5

x− 0.5

 ,

and with free surface boundary conditions on all sides. We consider different refinements and

polynomial degrees from 2 to 9 and estimate the error in the solution by computing a reference

solution using degree 11 polynomials (note that the solutions are the same up to the tolerance of

the iterative solvers since we have eliminated the time errors).

For all of the computations we record the number of iterations (a maximum of 500000) and

list them in Table 4.5.

p = 1 2 3 4 5 6 7 8 9

h WH 57 102 115 126 132 138 141 144 148
h/2 WH 68 108 114 126 130 133 138 143 146
h/4 WH 79 107 114 122 130 135 137 142 146
h/8 WH 83 108 114 125 130 133 137 142 146

h IWH 81 182 160 173 213 237 192 235 201
h/2 IWH 97 151 157 168 220 263 188 276 196
h/4 IWH 112 147 153 163 171 178 264 188 275
h/8 IWH 117 147 154 165 171 213 217 N/A N/A

h HH 480 25084 18298 37926 80262 144863 204694 230688 500000
h/2 HH 15686 32063 57338 106688 256801 347279 500000 500000 500000
h/4 HH 46667 79865 184331 334665 500000 500000 500000 500000 500000
h/8 HH 500000 304561 500000 500000 500000 500000 500000 N/A N/A

Table 4.5: Comparison of the number of iterations for the three different methods.

It can be seen that the fewest number of iterations are achieved with the WH method. We also

note that the number of iterations for WH is insensitive to the mesh resolution and has a weak

dependence on the polynomial degree. Again, the latter is due to the fact that the linear system
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we are solving comes from a bounded operator so that the condition number does not depend on h.

HH, which discretizes an unbounded and indefinite operator, behaves radically different with the

number of iterations increasing rapidly with decreasing mesh resolution. In addition, the number

of iterations for the HH method increases very quickly with the polynomial degree and, as a result,

many of the accurate test cases fail to converge. Similar to the WH method, the IWH method has

an iteration count that is relatively robust under grid refinement but with a slight increase with

order. We note that it does appear the higher order methods have more variation in iteration count

than the lower order methods, and in general the iteration count is larger than for the WH method.

The number of iterations displayed in Table 4.5 are not useful for comparing the different

methods as each iteration comes with a different computational cost. In Table 4.6 we instead list

the number of right hand side (rhs) evaluations.

p = 1 2 3 4 5 6 7 8 9

h WH 1425 4998 9315 15120 22176 30774 40326 51552 64676
h/2 WH 3400 10476 18354 30240 43550 59318 78936 102245 127458
h/4 WH 7821 20758 36594 58438 86970 120285 156728 202918 254916
h/8 WH 16434 41904 73188 119750 173940 236873 313456 405836 509686

h HH 1 5 2 3 4 5 5 4 ∞
h/2 HH 5 3 3 4 6 6 ∞ ∞ ∞
h/4 HH 6 4 5 6 ∞ ∞ ∞ ∞ ∞
h/8 HH ∞ 7 ∞ ∞ ∞ ∞ ∞ N/A N/A

h IWH 81 96 67 63 72 72 53 60 48
h/2 IWH 72 67 59 53 69 70 46 59 40
h/4 IWH 59 59 51 48 46 41 57 36 49
h/8 IWH 50 53 47 43 42 46 42 N/A N/A

Table 4.6: The number of right hand side evaluations (estimated) for the three different methods.

The top four rows display the actual number of right hand side evaluations and the rows below

indicate how many times more the HH and IWH method evaluates the right hand side. An infinity

sign indicates that the computation did not converge.

By a right hand side evaluation we mean a single application of the matrix corresponding to the

matrix discretizing the elastic operator. For the explicit method, the total number of rhs evaluations
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is NTNiter, where NT is the number of time-steps needed to evolve the elastic wave equation one

period and Niter is the number of iterations. For the IWH method we always take NT = 10 so

that the number of rhs evaluations is 10NinnerNiter, where Ninner is the number of inner iterations

used by the AMG preconditioner (as reported in Table 4.5). For the HH method the number of

rhs evaluations is equal to the number of GMRES iterations.

As can be seen in Table 4.6, the WH method is also more efficient with respect to the number

of rhs evaluations (note that we report total number of rhs for the WH method and multipliers for

the other methods). The advantage of the explicit method over the implicit method appears to be

decreasing with increased accuracy - both in terms of decreasing mesh size and increased polynomial

order. This is not unexpected as the number of time-steps needed for the explicit method grows

linearly with the reciprocal of the mesh size, and quadratically with the polynomial degree while

the implicit method maintains the number of time-steps constant. In terms of rhs evaluations, the

gap between the WH method and the HH method is smaller than between WH and IWH; though

the HH method degrades with increasing mesh refinement.

Finally, in Table 4.7 we report the increase in compute time (as a multiplicative factor) for

the IWH and HH methods relative to the time required to solve the same problem with the explicit

WH method.

p /meth 1 2 3 4 5 6 7 8 9

h HH 15 164 56 56 60 64 62 59 ∞
h/2 HH 265 157 109 96 117 113 ∞ ∞ ∞
h/4 HH 587 311 91 260 ∞ ∞ ∞ ∞ ∞
h/8 HH ∞ 224 ∞ ∞ ∞ ∞ ∞ N/A N/A

h IWH 192 197 137 113 103 90 59 73 44
h/2 IWH 169 185 125 112 107 121 55 42 29
h/4 IWH 261 295 61 152 62 68 71 36 42
h/8 IWH 28 30 100 69 62 46 34 N/A N/A

Table 4.7: The table reports how many times longer a computation with the HH and IWH method

takes compared to the explicit WH method.
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Throughout, the WH method is one to two orders of magnitude faster than the other methods.

The HH method becomes less attractive (especially when it stops converging) as the accuracy is

increased, while the IWH method improves with increased accuracy. It is of note that neither the

number of iterations nor the number of rhs is a good predictor of compute time. Possible causes

for this discrepancy are, a) that we only counted one right hand side evaluation per iteration and

neglected the cost of the AMG preconditioner, and b) that the GMRES solve for the HH method

actually has a significantly higher cost than conjugate gradient.

4.4.9 Materials with Spatially Varying Properties

We next consider an example taken from [79] with elastic propagation in a heterogeneous

medium. We define the domain as Ω = [0, 2] × [0, 1] where there is an embedded inclusion, ΩI =

[0.5, 1.5]× [0.4, 0.6], in the middle from a stiffer material. We let ΩI be a material with λ = 200, µ =

100, while the domain Ω \ ΩI has λ = 2 and µ = 1. We impose traction-free boundary conditions

at y = 0, 1 and at x = 1. We additionally have

u(0, y, t) =

 0

cos(ωt)

 , f(x, y, t)

 0

δ(|x− x0|+ |y − y0|) cos(ωt)

 ,

where δ is a delta function centered at x0 = 0.1 and y0 = 0.5.

We use the SIPDG method of Section 4.3.2 with a uniform quadrilateral mesh and polyno-

mial degree p = 6. We consider two meshes with element widths of h1 = 1/20 and h2 = 1/40,

respectively. We use CFL = 0.4 with the (corrected) explicit leapfrog time-stepper of Section 4.3.3,

integrate over five periods, and accelerate convergence with conjugate gradient with a relative resid-

ual tolerance of 10−5. We choose the frequency ω = 100 so that we have at least one element per

wavelength when using element widths of h1, and at least two when the widths are h2. We plot

the log10 of the magnitude of the displacement vector in Figure 4.5.
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Figure 4.5: The log10 of the magnitude of the displacements for the CG accelerated solution of WH

for the inclusion problem using sixth order polynomials within each element. (Left) Solution using

a grid resolution of at least one element per wavelength, and (Right) two elements per wavelength.

From Figure 4.5 it is clear that the solution using one element per wavelength is visually quite

similar to that of the refined mesh with two elements per wavelength. Thus using one element per

wavelength with a higher order polynomial order is sufficient to produce reasonable results, as was

similarly seen in [103].

4.4.10 Vibrations of a Toroidal Shell

Finally, as a more realistic example in three dimensions we perform a simulation of a toroidal

shell parametrized by

x(θ, φ, r) = (R+ r cos(θ)) cos(φ), y = (θ, φ, r)(R+ r cos(θ)) cos(φ), z(θ, φ, r) = r sin(θ).

Here we set R = 4, and let the partial toroidal shell occupy the volume 1 ≤ r ≤ 2, and 0 ≤ φ, θ ≤ π.

The surfaces at r = 1 and r = 2 are free, and we impose homogeneous Dirichlet conditions on all

other boundaries.

We force the problem by

f =

√
σ3

20


1

1

1

 e−ζ
2

cos(ωt), σ = 100ω, ζ2 = 0.5σ((x− 4)2 + (y − 0.5)2 + (z − 1)2.
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We consider two cases. In the first case the frequency is ω = 5.1234 and we use a grid that consists

of 400 × 120 × 40 points. In the second case the frequency is ω = 10.2468 and we use a grid that

consists of 800× 240× 80 points.

The converged solution is displayed in Figure 4.6.

Figure 4.6: The solution in the toroidal shell for (Left) ω = 5.1234, and (Right) ω = 10.2468. The

projection onto the xy-plane is the magnitude of the displacement on the outermost free surface

r = 2. In black we display the (scaled) displaced mesh for r = 2.

The projection onto the xy-plane is the magnitude of the displacement
√
u2 + v2 + w2 on the

outermost free surface, r = 2. The mesh is the grid for that outermost surface with the (scaled)

displacements added to the grid coordinates.

4.5 Conclusion

In this chapter we applied the WaveHoltz iteration, a time-domain Krylov accelerated fixed-

point iteration, to the solution of the elastic Helmholtz equation for interior problems with Dirichlet

and/or free surface boundary conditions. With symmetric discretizations, the iteration results in a

positive definite and symmetric matrix, a notable advantage over direct discretizations of the elastic

Helmholtz equation which typically lead to highly indefinite systems. In this work we have also

introduced a new implicit time-stepping scheme and demonstrated that its use in the WaveHoltz

iteration completely removes time discretization errors.

The implicit method did not offer any advantages for the one problem we considered here,
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but we believe it could be an advantageous approach for problems with anisotropic or refined

non-conforming meshes. It could also prove to be a possible way to construct preconditioners.

Finally, here we have only considered the energy conserving problem. In the future, we will

revisit the elastic Helmholtz problem with impedance/absorbing boundary conditions which are a

hallmark of scattering and seismic applications.



Chapter 5

Optimal Control of Closed Quantum Systems via B-Splines with Carrier Waves

In this chapter we consider the quantum optimal control problem of determining electromag-

netic pulses for implementing unitary gates in a quantum computer. A truncated modal expansion

of Schrödinger’s equation is used to model the quantum system, in which the state of the quantum

system is described by the state vector1 ψ ∈ CN . The elements of the state vector are complex

probability amplitudes, where the magnitude squared of each element represents the probability

that the quantum system occupies the corresponding energy level [90]. Because the probabilities

must sum to one, the state vector is normalized such that ‖ψ‖22 = 1. The evolution of the state

vector in the time interval t ∈ [0, T ] is governed by Schrödinger’s equation:

dψ

dt
+ iH(t;α)ψ = 0, 0 ≤ t ≤ T, ψ(0) = g. (5.1)

Here, i =
√
−1 is the imaginary unit and g is the initial state. The Hamiltonian matrix H(t;α) ∈

CN×N (scaled such that Planck’s constant becomes ~ = 1) is Hermitian and is assumed to be of

the form

H(t;α) = Hs +Hc(t;α), (5.2)

where Hs and Hc are the system and control Hamiltonians, respectively. The control Hamiltonian

models the action of external control fields on the quantum system. The time dependence in the

control Hamiltonian is parameterized by the control vector α ∈ RD. As a result, the state vector

ψ depends implicitly on α through Schrödinger’s equation.

1 This chapter uses conventional matrix-vector notation. For finite-dimensional systems, it is equivalent to the
bra-ket notation that often is used in quantum physics.
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To justify the truncation of the modal expansion of Schrödinger’s equation, we divide the

state vector into E > 0 “essential” levels and G ≥ 0 “guard” levels, such that E + G = N . The

population of the highest guard levels need to be small to minimize coupling to even higher energy

levels, which are excluded from the model.

The goal of the quantum optimal control problem is to determine the parameter vector α such

that the time-dependence in the Hamiltonian matrix leads to a solution of Schrödinger’s equation

such that ψ(T ) ≈ Vtgg, where Vtg is the target gate transformation. The gate transformation

should be satisfied for all initial conditions in the essential subspace of the state vector. A basis of

this subspace is provided by the matrix U0 ∈ RN×E . The definitions of U0 and Vtg are described

in Appendix .12.

To account for any initial condition in the essential subspace, we define the solution operator

matrix U ∈ CN×E . Each column of this matrix satisfies (5.1), leading to Schrödinger’s equation in

matrix form,

dU(t)

dt
+ iH(t;α)U(t) = 0, 0 ≤ t ≤ T, U(0) = U0. (5.3)

The overlap between the target gate matrix and the solution operator matrix at the final time is

defined by

OVtg := 〈U(T ;α), Vtg〉F , (5.4)

where 〈·, ·〉F denotes the Frobenious matrix scalar product. Because U0 spans an E-dimensional

subspace of initial conditions, we have |OT | ≤ E. The difference between U(T ;α) and Vtg can be

measured by the target gate infidelity [71, 78, 82, 83, 98],

J1(UT (α)) := 1− 1

E2

∣∣〈UT (α), Vtg〉F
∣∣2 , UT (α) := U(T ;α). (5.5)

Note that the target gate infidelity is invariant to global phase differences between UT and Vtg. In

quantum physics, the global phase of a state is considered irrelevant because it can not be measured.

The leakage of population to the guard states can be measured by the objective function

J2(U(·;α)) =
1

T

∫ T

0
〈U(t;α),WU(t;α)〉F dt, (5.6)
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where W is a diagonal N × N positive semi-definite weight matrix. The elements in W are zero

for all essential states and are positive for the guard states. The elements of W are typically larger

for higher energy levels in the model.

For the quantum control problem with guard states, we formulate the optimization problem

as

minα G(α) := J1(UT (α)) + J2(U(·;α)), (5.7)

dU

dt
+ iH(t;α)U = 0, 0 ≤ t ≤ T, U(0;α) = U0, (5.8)

αmin ≤ αq ≤ αmax, q = 1, 2, . . . , D. (5.9)

For a discussion of the solvability of the quantum control problem, see for example Borzi et al. [27].

In the quantum optimal control problem, the Schrödinger (state) equation is a time-dependent

Hamiltonian system. To ensure long-time numerical accuracy it is appropriate to discretize it using

a symplectic time-integration method [67]. For this purpose we use the Störmer-Verlet method,

which can be written as a partitioned Runge-Kutta scheme, based on the trapezoidal and implicit

midpoint rules. Our main theoretical contribution is the generalization of Ober-Blöbaum’s [92]

work to the case of a time-dependent Hamiltonian system. We show that the compatible method

for the adjoint state equation resembles a partitioned Runge-Kutta scheme, except that the time-

dependent matrices must be evaluated at modified time levels.

Our approach builds upon the works of Hager [65], Sanz-Serna [97] and Ober-Blöbaum [92].

Hager [65] first showed how the Hamiltonian structure in an optimization problem can be utilized

to calculate the gradient of the objective function. Hager considered the case in which the state

equation is discretized by one Runge-Kutta scheme, with the adjoint state equation discretized by

another Runge-Kutta scheme. It was found that the discrete gradient can be calculated exactly if

the pair of Runge-Kutta methods satisfy the requirements of a symplectic partitioned Runge-Kutta

method. Further details and generalizations are described in the review paper by Sanz-Serna [97].

Ober-Blöbaum [92] extended Hager’s approach to the case where the state equation itself is a

Hamiltonian system that is discretized by a partitioned Runge-Kutta scheme. For autonomous
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state equations, it was shown that the compatible discretization of the adjoint state equation is

another partitioned Runge-Kutta scheme.

Several numerical methods for the quantum control problem are based on the GRAPE al-

gorithm [73]. In this case, Schrödinger’s equation is discretized in time using the second order

accurate Magnus scheme [67], in which the Hamiltonian matrix is evaluated at the midpoint of

each time step. A stair-step approximation of the control functions is imposed such that each con-

trol function is constant within each time step. Thus, the time step determines both the numerical

accuracy of the dynamics of the quantum state and the number of control parameters. With Q

control functions, M time steps of size h, the control functions are thus described by M times Q

parameters αj,k. The propagator in the Magnus method during the jth time step is of the form

exp(−ih(H0 +
∑

k αk,jHk)). In general, the matrices H0 and Hk do not commute, leading to an

integral expression for the derivative of the propagator with respect to the parameters, which is

needed for computing the gradient of the objective function. In the original GRAPE method, this

integral expression is approximated by the first term in its Taylor series expansion, leading to an

approximate gradient that is polluted by an O(h2) error. As the gradient becomes smaller during

the optimization, the approximation error will eventually dominate the numerical gradient, which

may hamper the convergence of the optimization algorithm. A more accurate way of numerically

evaluating the derivative of the time-step propagator can be obtained by retaining more terms in

the Taylor series expansion, or by using a matrix commutator expansion [36]. More recently, the

GRAPE algorithm has been generalized to optimize objective functions that include a combination

of the target gate infidelity, integrals penalizing occupation of “forbidden states” and terms for

imposing smoothness and amplitude constraints on the control functions. Here, automatic differ-

entiation is used for computing the gradient of the objective function [78]. However, the number of

control parameters is still proportional to the number of time steps, which may become very large

when the duration of the gate is long, or the quantum state is highly oscillatory.

As an alternative to calculating the gradient of the objective function by solving an adjoint

equation backwards in time, the gradient can be calculated by differentiating Schrödinger’s equa-
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tion with respect to each parameter in the control function, leading to a differential equation for

each component of the gradient of the state vector. This approach, implemented in the GOAT

algorithm [83], allows the gradient of the objective function to be calculated exactly, but requires

(D + 1) Schrödinger systems to be solved when the control functions depend on D parameters.

This makes the method computationally expensive when the number of parameters is large.

Using the stair-stepped approximation of the control functions often leads to a large number

of control parameters, which may hamper the convergence of the GRAPE algorithm. The total

number of parameters can be reduced by instead expanding the control functions in terms of basis

functions. By using the chain rule, the gradient from the GRAPE algorithm can then be used

to calculate the gradient with respect to the coefficients in the basis function expansion. This

approach is implemented in the GRAFS algorithm [82], where the control functions are expanded

in terms of Slepian sequences.

Gradient-free optimization methods can also be applied to quantum optimal control problems.

These methods do not rely on the gradient to be evaluated and are therefore significantly easier to

implement. However, the convergence of these methods is usually much slower than for gradient-

based techniques, unless the number of control parameters is very small. One example of a gradient-

free methods for quantum optimal control is the CRAB algorithm [32].

Many parameterizations of quantum control functions have been proposed in the literature,

for example cubic splines [48], Gaussian pulse cascades [38], Fourier expansions [110] and Slepian

sequences [82].

This chapter presents a different approach, based on parameterizing the control functions by

B-spline basis functions with carrier waves. Our approach relies on the observation that transitions

between the energy levels in a quantum system are triggered by resonance, at frequencies that can

be determined by inspection of the system Hamiltonian. The carrier waves are used to specify the

frequency spectra of the control functions, while the B-spline functions specify their envelope and

phase. We find that this approach allows the number of control parameters to be independent of,

and significantly smaller than, the number of time steps for integrating Schrödinger’s equation.



132

The remainder of the chapter is organized as follows. In Section 5.1, we introduce a Hamilto-

nian model and discuss the resonant frequencies needed to trigger transitions between the states in

the system. These resonant frequencies naturally motivate us to parameterize the control functions

using B-splines with carrier waves; details of this parameterization are presented in Section 5.2.

In Section 5.3, we introduce a real-valued formulation of Schrödinger’s equation and present the

symplectic Störmer-Verlet scheme that we use for its time-integration. To achieve an exact gradient

of the discrete objective function, we apply the “discretize-then-optimize” approach. Based on the

Störmer-Verlet scheme, in Section 5.4 we outline the construction of a discrete adjoint time integra-

tion method. Section 5.5 presents numerical examples. We illustrate how the proposed technique,

combined with the interior point L-BFGS algorithm [91] from the IPOPT package [106], is used

to optimize control functions for multi-level qudit gates. We additionally consider a simple noise

model and risk-neutral optimization to illustrate the construction of controls that are robust to

uncertainty in the Hamiltonian. The proposed scheme is implemented in the Julia [24] program-

ming language, in an open source package called Juqbox.jl [53]. In Section 5.6, we compare the

performance of Juqbox.jl and two implementations of the GRAPE algorithm. Concluding remarks

are given in Section 5.7.

5.1 Hamiltonian model

Several Hamiltonian models exist for describing the quantum physics of super-conducting

circuits [26, 84]. In this chapter, we consider a composite quantum system with Q ≥ 1 subsystems

(qubits/qudits) where the system Hamiltonian satisfies:

Hs =

Q∑
q=1

(
ωqa

†
qaq −

ξq
2
a†qa
†
qaqaq −

∑
p>q

ξpqa
†
papa

†
qaq

)
. (5.10)

In this model, ωq is the ground state transition frequency and ξq is the self-Kerr coefficient of

subsystem q; the cross-Kerr coefficient between subsystems p and q is denoted ξpq. Furthermore,

subsystem q is assumed to have nq ≥ 2 energy levels, with lowering operator aq. The lowering
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operator is constructed using Kronecker products,

aq := InQ ⊗ · · · ⊗ Inq+1 ⊗Aq ⊗ Inq−1 ⊗ · · · ⊗ In1 ∈ RN×N , N =

Q∏
q=1

nq, (5.11)

where In denotes the n× n identity matrix and the single-system lowering matrix satisfies

Aq :=



0
√

1

. . .
. . .

. . .
√
nq − 1

0


∈ Rnq×nq . (5.12)

We consider a control Hamiltonian with real-valued control functions that are parameterized by

the control vector α,

Hc(t;α) =

Q∑
q=1

fq(t;α)(aq + a†q), fq(t;α) = 2 Re
(
dq(t;α) eiωr,qt

)
. (5.13)

where ωr,q is the drive frequency in subsystem q.

5.1.1 Rotating wave approximation

To slow down the time scales in the state vector, we apply a rotating frame transformation

in Schrödinger’s equation through the unitary change of variables ψ̃(t) = R(t)ψ(t), where

R(t) =
1⊗

q=Q

exp
(
iωr,qt A

†
qAq

)
, (5.14)

and ⊗1
q=QCq = CQ⊗CQ−1⊗. . .⊗C1. Note that we use ωr,q as the frequency of rotation in subsystem

q. The system Hamiltonian transforms into Hrw
s = Hs −

∑
ωr,qa

†
qaq. Then, the rotating wave

approximation is applied to transform the control Hamiltonian. Here, we substitute the laboratory

frame control function fq(t;α) from (5.13) and neglect terms oscillating with frequencies ±2ωr,q.

As a result, the Hamiltonians (5.10) and (5.13) transform into (see Appendix .13 for details)

Hrw
s =

Q∑
q=1

(
∆qa

†
qaq −

ξq
2
a†qa
†
qaqaq −

∑
p>q

ξqpa
†
qaqa

†
pap

)
, (5.15)

Hrw
c (t;α) =

Q∑
q=1

(
dq(t;α)aq + d̄q(t;α)a†q

)
, (5.16)
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where ∆q = ωq − ωr,q is called the detuning frequency. The main advantages of the rotating

frame approximation are the reduction of the spectral radius in the system Hamiltonian (5.15),

and the absence of the highly oscillatory factor exp(iωr,qt) in the control Hamiltonian (5.16). In

the following we assume that the rotating wave approximation has already been performed, and

the tilde on the state vector will be suppressed. We additionally note that the target unitary Vtg

is similarly transformed into the rotating frame via V rw
tg = R(T )Vtg.

5.1.2 Resonant frequencies

To simplify the presentation we restrict our analysis to a bipartite quantum system, i.e.,

Q = 2. The system Hamiltonian (5.15) is diagonal and we denote its elements by

{Hrw
s }j,k =


κj , j = k,

0, otherwise,

κj =
2∑
q=1

(
∆qjq −

ξq
2
jq(jq − 1)

)
− ξ12j1j2, (5.17)

for jq ∈ [0, nq−1] and where j = (j2, j1) is a multi-index. Let us consider the case when the control

functions dk(t) oscillate with carrier wave frequencies {Ω1,Ω2}, and amplitude ε, where 0 < ε� 1.

These assumptions give

Hrw
c (t) = εH1(t), H1(t) =

2∑
k=1

(
eiΩktak + e−iΩkta†k

)
. (5.18)

We make an asymptotic expansion of the solution of Schrödinger’s equation (5.1), ψ = ψ(0) +

εψ(1) +O(ε2). The zero’th and first order terms satisfy

dψ(0)

dt
+ iHrw

s ψ(0) = 0, ψ(0)(0)= g, (5.19)

dψ(1)

dt
+ iHrw

s ψ(1) = f(t), ψ(1)(0)= 0. (5.20)

Because the system Hamiltonian is diagonal, (5.19) is a decoupled system of ordinary differential

equation that is solved by ψ
(0)
j (t) = gje

−iκjt. The right hand side of (5.20) satisfies f(t) :=

−iH1(t)ψ(0)(t), which can be written

f(t) =

Q∑
k=1

f (k)(t), f (k)(t) = −i
(
eiΩktak + e−iΩkta†k

)
ψ(0)(t). (5.21)
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Because the matrix Hrw
s is diagonal, the system for the first order perturbation, (5.20), is

also decoupled. We are interested in cases when ψ
(1)
j (t) grows in time, corresponding to resonance.

Let ek denote the kth unit vector and denote a shifted multi-index by j ± e1 = (j2, j1 ± 1) and

j ± e2 = (j2 ± 1, j1).

Lemma 5.1.1. The perturbation of the state vector, ψ
(1)
j (t), grows linearly in time when the carrier

wave frequencies and the initial condition satisfy:

Ωk = κj+ek − κj , gj+ek 6= 0, jk ∈ [0, nk − 2], (5.22)

Ωk = κj − κj−ek , gj−ek 6= 0, jk ∈ [1, nk − 1], (5.23)

for k = {1, 2}.

Proof. See Appendix .14.

We can evaluate the conditions for resonance by inserting the Hamiltonian elements from

(5.17) into (5.22) and (5.23). For k = 1 and j2 ∈ [0, n2 − 1], resonance occurs in ψ
(1)
j (t) when

Ω1 =


∆1 − ξ1j1 − ξ12j2, gj+e1 6= 0, j1 ∈ [0, n1 − 2],

∆1 − ξ1(j1 − 1)− ξ12j2, gj−e1 6= 0, j1 ∈ [1, n1 − 1].

(5.24)

For k = 2 and j1 ∈ [0, n1 − 1], the resonant cases are

Ω2 =


∆2 − ξ2j2 − ξ12j1, gj+e2 6= 0, j2 ∈ [0, n2 − 2],

∆2 − ξ2(j2 − 1)− ξ12j1, gj−e2 6= 0, j2 ∈ [1, n2 − 1].

(5.25)

For example, when n1 = 3, n2 = 3 and gj 6= 0 ∀j, the carrier wave frequencies:

Ω1 =

[
∆1, ∆1 − ξ12, ∆1 − 2ξ12, ∆1 − ξ1, ∆1 − ξ1 − ξ12, ∆1 − ξ1 − 2ξ12

]
,

Ω2 =

[
∆2, ∆2 − ξ12, ∆2 − 2ξ12, ∆2 − ξ2, ∆2 − ξ2 − ξ12, ∆2 − ξ2 − 2ξ12

]
,

lead to resonance.

Since Schrödinger’s equation conserves total probability, the linear growth in time only occurs

for short times. Thus, each resonant frequency corresponds to the initiation of a transition between

two energy levels in the quantum system.
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5.2 Quadratic B-splines with carrier waves

Motivated by the results from the previous section, we parameterize the rotating frame control

functions using basis functions that act as envelopes for carrier waves with fixed frequencies:

dk(t;α) =

Nf∑
n=1

dk,n(t;α), dk,n(t;α) =

Nb∑
b=1

Ŝb(t)α
k
b,n e

itΩk,n , k ∈ [1, Q]. (5.26)

Here, Ωk,n ∈ R is the nth carrier wave frequency for system k. These frequencies are chosen to

match the resonant frequencies in the system Hamiltonian (5.15), as outlined above. The complex

coefficients αkb,n = α
k(r)
b,n + iα

k(i)
b,n are control parameters that are to be determined through opti-

mization, corresponding to a total of D = 2QNbNf real-valued parameters. It is convenient to also

define the real-valued functions

pk,n(t;α) =

Nb∑
b=1

Ŝb(t)α
k(r)
b,n , qk,n(t;α) =

Nb∑
b=1

Ŝb(t)α
k(i)
b,n , (5.27)

such that dk,n(t;α) = (pk,n(t;α) + iqk,n(t;α)) exp(itΩk,n).

The basis functions Ŝb(t) are chosen to be piece-wise quadratic B-spline wavelets (see Fig-

ure 5.1), centered on a uniform grid in time,

tm = (m− 1.5)δ, m = 1, . . . , D1, δ =
T

D1 − 2
. (5.28)

Figure 5.1: The real part of a quadratic B-spline control function, with zero carrier frequency

(dashed black). The solid colored lines are the individual B-spline wavelets.
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Each basis function Ŝb(t) is centered around t = tm and is easily expressed in terms of the

scaled time parameter τm(t) = (t− tm)/3δ,

Ŝb(t) = S̃(τm(t)), S̃(τ) =



9
8 + 9

2τ + 9
2τ

2, −1
2 ≤ τ < −

1
6 ,

3
4 − 9τ2, −1

6 ≤ τ <
1
6 ,

9
8 −

9
2τ + 9

2τ
2, 1

6 ≤ τ <
1
2 ,

0, otherwise.

(5.29)

The basis function Ŝb(t) has local support for t ∈ [tm − 1.5δ, tm + 1.5δ]. Thus, for any fixed time t

a control function will get contributions from at most three B-spline wavelets, allowing the control

functions to be evaluated very efficiently. We also remark that the control function (5.26) can be

evaluated at any time t ∈ [0, T ]. Importantly, this allows the time-integration scheme to be chosen

independently of the parameterization of the control function, and allows the number of control

parameters to be chosen independently of the number of time steps for integrating Schrödinger’s

equation.

5.3 Real-valued formulation

A real-valued formulation of Schrödinger’s equation (5.1) is given byu̇
v̇

 =

S(t) −K(t)

K(t) S(t)


u
v

 =:

fu(u,v, t)

fv(u,v, t)

 ,
u(0)

v(0)

 =

gu
gv

 , (5.30)

where,

u = Re(ψ), v = −Im(ψ), K = Re (H), S = Im (H),

Because the matrix H is Hermitian, KT = K and ST = −S. The real-valued formulation of

Schrödinger’s equation is a time-dependent Hamiltonian system corresponding to the Hamiltonian

functional,

H(u,v, t) = uTS(t)v +
1

2
uTK(t)u+

1

2
vTK(t)v. (5.31)

In general, S(t) 6= 0, which makes the Hamiltonian system non-separable.
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In terms of the real-valued formulation, let the columns of the solution operator matrix in

(5.3) satisfy U = [u1 − iv1, u2 − iv2, . . . ,uE − ivE ]. Here, (uj ,vj) satisfy (5.30) subject to the

initial conditions gvj = 0 and guj = ej , where j = (jQ, jQ−1, . . . , j1) is a multi-index such that

jq ∈ {0, 1, . . . ,mq− 1} and mq is the number of essential levels of subsystem q. The columns in the

target gate matrix Vtg = [d1, . . . ,dE ] correspond to

Vtg = [du1 − idv1, du2 − idv2, . . . ,duE − idvE ] , duj = Re(dj), dvj = −Im(dj).

Using the real-valued notation, the two parts of the objective function (5.7) can be written

J1(UT (α)) =

(
1− 1

E2
|OV (UT (α))|2

)
, (5.32)

J2(U(·,α)) =
1

T

E−1∑
j=0

∫ T

0
〈uj(t,α)− ivj(t,α),W (uj(t,α)− ivj(t,α))〉2 dt, (5.33)

where

OV (UT ) =

E−1∑
j=0

〈
uj(T,α)− ivj(T,α),duj − idvj

〉
2
. (5.34)

5.3.1 Time integration

Let tn = nh, for n = 0, 1, . . . ,M , be a uniform grid in time where h = T/M is the time step.

Also let un ≈ u(tn) and vn ≈ v(tn) denote the numerical solution on the grid. We use a partitioned

Runge-Kutta (PRK) scheme [67] to discretize the real-valued formulation of Schrödinger’s equation,

u0 = gu, v0 = gv, (5.35)

un+1 = un + h

s∑
i=1

bui κ
n,i, vn+1 = vn + h

s∑
i=1

bvi `
n,i, (5.36)

κn,i = fu(Un,i,V n,i, tn + cui h), `n,i = fv(Un,i,V n,i, tn + cvi h), (5.37)

Un,i = un + h
s∑
j=1

auijκ
n,j , V n,i = vn + h

s∑
j=1

avij`
n,j . (5.38)
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Here, s ≥ 1 is the number of stages. The stage variables Un,i and V n,i are set in a bold font to

indicate that they are unrelated to the solution operator matrix U(t,α) and the target gate matrix

Vtg.

The Störmer-Verlet scheme is a two-stage PRK method (s = 2) that is symplectic, time-

reversible and second order accurate [67]. It combines the trapezoidal and the implicit midpoint

rules, with Butcher coefficients:

au11 = au12 = 0, au21 = au22 =
1

2
, av11 = av21 =

1

2
, av12 = av22 = 0, (5.39)

bu1 = bu2 =
1

2
, cu1 = 0, cu2 = 1, bv1 = bv2 =

1

2
, cv1 = cv2 =

1

2
. (5.40)

5.3.2 Time step restrictions for accuracy and stability

The accuracy in the numerical solution of Schrödinger’s equation is essentially determined

by how well the fastest time scale in the state vector is resolved on the grid in time. The analysis

of the time scales in the solution of Schrödinger’s equation is most straightforward to perform in

the complex-valued formulation (5.1).

There are two fundamental time scales that must be resolved in the solution of Schrödinger’s

equation. The first corresponds to how quickly the control functions must vary in time to trigger the

desired transitions between the energy levels in the quantum system. This time scale is determined

by the transition frequencies in the system Hamiltonian, which follow as the difference between

its consecutive eigenvalues. In the Hamiltonian model (5.15) and (5.16), the angular transition

frequencies between the essential energy levels (with detuning frequency ∆1) are

Ω1,n = ∆1 − nξ1, n = 0, . . . , Nf − 1.

The second time scale is due to the harmonic oscillation of the phase in the state vector. It can

be estimated by freezing the time-dependent coefficients in the Hamiltonian matrix at some time

t = t∗ and considering Schrödinger’s equation with the time-independent Hamiltonian matrix H∗ =
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H(t∗). The N ×N matrix H∗ is Hermitian and can be diagonalized by a unitary transformation,

H∗X = XΓ, X†X = IN , Γ = diag(γ1, γ2, . . . , γN ),

where the eigenvalues γk are real. By the change of variables ψ̃ = X†ψ, the solution of the

diagonalized system follows as

ψ̃k(t) = e−iγktψ̃k(0),

corresponding to the period τk = 2π/|γk|. The shortest period thus follows from the spectral radius

of H∗, ρ(H∗) = maxk |γk|.

To estimate the time step for the Störmer-Verlet method, we require that the shortest period

in the solution of Schrödinger’s equation must be resolved by at least CP time steps. Taking both

time scales into account leads to the time step restriction

h ≤ 2π

CP max{ρ(H∗),maxn(|Ω1,n|)}
. (5.41)

The value of CP that is needed to obtain a given accuracy in the numerical solution depends on the

order of accuracy, the duration of the time integration, as well as the details of the time-stepping

scheme. For second order accurate methods such as the Störmer-Verlet method, acceptable accuracy

for engineering applications can often achieved with CP ≈ 40. With the Störmer-Verlet method,

we note that the time-stepping can become unstable if CP ≤ 2, corresponding to a sampling rate

below the Nyquist limit.

After freezing the coefficients, the Hamiltonian (5.15) and (5.16) becomes

H∗ = −ξa
2
a†a†aa+ p∗(a+ a†) + iq∗(a− a†), p∗ = p(t∗,α), q∗ = q(t∗,α).

We can estimate the spectral radius of H∗ ∈ CN×N using the Gershgorin circle theorem [59].

Because H∗ is Hermitian, all its eigenvalues are real. As a result, its spectral radius can be bounded

by

ρ(H∗) ≤
|ξa|
2

(N − 1)(N − 2) + 2d∞
√
N − 1.
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Here we have used that the control function is bounded by d∞ = maxt |d1(t,α)| for a given pa-

rameter vector α, in the interval 0 ≤ t ≤ T . With this estimate in (5.41) we guarantee that the

time-dependent phase in the state vector is resolved by at at least CP time steps per shortest

period.

If the optimization imposes amplitude constraints on the parameter vector, |α|∞ ≤ αmax,

those constraints can be used to estimate the time step before the optimization starts. This allows

the same time step to be used throughout the iteration and eliminates the need to recalculate the

spectral radius of H∗ when α changes.

Our implementation of the Störmer-Verlet scheme was verified to be second order accurate. It

was also found to give approximately the same accuracy as the second order Magnus integrator [67]

when the same time step was used in both methods.

5.4 Discretizing the objective function and its gradient

In this section, we develop a “discretize-then-optimize” approach in which we first discretize

the objective function and then derive a compatible scheme for discretizing the adjoint state equa-

tion, which is used for computing the gradient of the objective function. As was outlined in

the introduction, our approach builds upon the works of Hager [65], Sanz-Serna [97] and Ober-

Blöbaum [92].

5.4.1 Discretizing the objective function

The Störmer-Verlet scheme can be written in terms of the stage variables (Un,i,V n,i) by

substituting (κn,i, `n,i) from (5.37) into (5.36),

u0 = gu, v0 = gv, (5.42)

un+1 = un +
h

2

(
SnU

n,1 + Sn+1U
n,2 −KnV

n,1 −Kn+1V
n,2
)
, (5.43)

vn+1 = vn +
h

2

(
Kn+1/2

(
Un,1 +Un,2

)
+ Sn+1/2(V n,1 + V n,2)

)
, (5.44)
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and into (5.38),

Un,1 = un, (5.45)

Un,2 = un +
h

2

(
SnU

n,1 + Sn+1U
n,2 −KnV

n,1 −Kn+1V
n,2
)
, (5.46)

V n,1 = vn +
h

2

(
Kn+1/2U

n,1 + Sn+1/2V
n,1
)
, (5.47)

V n,2 = vn +
h

2

(
Kn+1/2U

n,1 + Sn+1/2V
n,1
)
. (5.48)

Here, Sn = S(tn), Sn+1/2 = S(tn + 0.5h), etc. Because S(t) 6= 0, the scheme is block implicit. Note

that un+1 = Un,2 and V n,1 = V n,2 = v(tn+1/2) +O(h2).

The numerical solution at the final time step provides a second order accurate approximation

of the continuous solution operator matrix UT , which we denote UTh. It is used to approximate

the matrix overlap function OT in (5.4),

OV h(UTh) =
E−1∑
j=0

(〈
uMj ,d

u
j

〉
2

+
〈
vMj ,d

v
j

〉
2

)
+ i

E−1∑
j=0

(〈
vMj ,d

u
j

〉
2
−
〈
uMj ,d

v
j

〉
2

)
, (5.49)

which is then used as the first part of the discrete objective function,

J h1 (UTh) =

(
1− 1

E2
|OV h(UTh)|2

)
. (5.50)

The integral in the objective function (5.6) can be discretized to second order accuracy by

using the Runge-Kutta stage variables,

J h2 (U ,V ) =
h

T

E−1∑
j=0

M−1∑
n=0

(
1

2

〈
Un,1
j ,WUn,1

j

〉
2

+
1

2

〈
Un,2
j ,WUn,2

j

〉
2

+
〈
V n,1
j ,WV n,1

j

〉
2

)
. (5.51)

Based on the above formulas we discretize the objective function (5.7) according to

Gh(α) = J h(UαTh,U
α,V α), J h(UTh,U ,V ) := J h1 (UTh) + J h2 (U ,V ). (5.52)

Here, UαTh, Uα and V α represent the time-discrete solution of the Störmer-Verlet scheme for a

given parameter vector α. We note that Gh(α) can be evaluated by accumulation during the

time-stepping of the Störmer-Verlet scheme.
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5.4.2 The discrete adjoint approach

The gradient of the discretized objective function can be derived from first order optimality

conditions of the corresponding discrete Lagrangian. In this approach, let (µnj ,ν
n
j ) be the adjoint

variables and let (Mn,i
j ,Nn,i

j ) be Lagrange multipliers. We define the discrete Lagrangian by

Lh(u,v,U ,V ,µ,ν,M ,N ,α) =

J h(UTh,U ,V )−
E−1∑
j=0

(〈
u0
j − guj ,µ0

j

〉
2

+
〈
v0
j − gvj ,ν0

j

〉
2

+
6∑

k=1

T kj

)
. (5.53)

The first two terms in the sum enforce the initial conditions (5.42). The terms T 1
j and T 2

j enforce

the time-stepping update formulas (5.43)-(5.44) in the Störmer-Verlet scheme,

T 1
j =

M−1∑
n=0

〈
un+1
j − unj −

h

2

(
SnU

n,1
j + Sn+1U

n,2
j −KnV

n,1
j −Kn+1V

n,2
j

)
,µn+1

j

〉
2

, (5.54)

T 2
j =

M−1∑
n=0

〈
vn+1
j − vnj −

h

2

(
Kn+1/2

(
Un,1
j +Un,2

j

)
+ Sn+1/2(V n,1

j + V n,2
j )

)
,νn+1

j

〉
2

. (5.55)

The terms T 3
j to T 6

j enforce the relations between the stage variables (5.45)-(5.48) using the La-

grange multipliers (Mn,i
j and Nn,i

j ), see Appendix .15 for details.

To derive the discrete adjoint scheme, we note that the discrete Lagrangian (5.53) has a

saddle point if

∂Lh

∂µnj
=
∂Lh

∂νnj
=

∂Lh

∂Nn,i
j

=
∂Lh

∂Mn,i
j

= 0, (5.56)

∂Lh

∂unj
=
∂Lh

∂vnj
=

∂Lh

∂Un,i
j

=
∂Lh

∂V n,i
j

= 0, (5.57)

for n = 0, 1, . . . ,M , i = 1, 2 and j = 0, 1, . . . , E − 1. Here, the set of conditions in (5.56) result in

the Störmer-Verlet scheme (5.42)-(5.48) for evolving (unj ,v
n
j ,U

n,i
j ,V n,i

j ) forwards in time. The set

of conditions in (5.57) result in a time-stepping scheme for evolving the adjoint variables (µnj ,ν
n
j )

backwards in time, as is made precise in the following lemma.

Lemma 5.4.1. Let Lh be the discrete Lagrangian defined by (5.53). Furthermore, let

(unj ,v
n
j ,U

n,i
j ,V n,i

j ) satisfy the Störmer-Verlet scheme (5.42)-(5.48) for a given parameter vector α.
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Then, the set of saddle-point conditions (5.57) are satisfied if the Lagrange multipliers (µnj ,ν
n
j ) are

calculated according to the reversed time-stepping scheme,

µMj =
∂J h

∂uMj
, νMj =

∂J h

∂vMj
, (5.58)

µnj = µn+1
j − h

2

(
κn,1j + κn,2j

)
, (5.59)

νnj = νn+1
j − h

2

(
`n,1j + `n,2j

)
, (5.60)

for n = M − 1,M − 2, . . . 0. Because ST = −S and KT = K, the slopes satisfy

κn,1j = SnX
n
j −Kn+1/2Y

n,1
j − 2

h

∂J h

∂Un,1
j

, (5.61)

κn,2j = Sn+1X
n
j −Kn+1/2Y

n,2
j − 2

h

∂J h

∂Un,2
j

, (5.62)

`n,1j = KnX
n
j + Sn+1/2Y

n,1
j − 2

h

∂J h

∂V n,1
j

, (5.63)

`n,2j = Kn+1X
n
j + Sn+1/2Y

n,2
j − 2

h

∂J h

∂V n,2
j

, (5.64)

where the stage variables are given by

Xn
j = µn+1

j − h

2
κn,2j , (5.65)

Y n,2
j = νn+1

j , (5.66)

Y n,1
j = νn+1

j − h

2

(
`n,1j + `n,2j

)
. (5.67)

Proof. The lemma follows after a somewhat tedious but straightforward calculation shown in detail

in Appendix .15.

Corresponding to the continuous Schrödinger equation (5.30), the adjoint state equation

(without forcing) is µ̇
ν̇

 =

S(t) −K(t)

K(t) S(t)


µ
ν

 =:

fµ(µ,ν, t)

fν(µ,ν, t)

 , (5.68)

where we used that ST = −S and KT = K.
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Corollary 5.4.1.1. The time-stepping scheme (5.59)-(5.67) (without forcing) is a consistent ap-

proximation of the continuous adjoint state equation (5.68). It can be written as a modified parti-

tioned Runge-Kutta method, where the Butcher coefficients are

aµ11 = aµ21 = 1/2, aµ12 = aµ22 = 0, aν11 = aν12 = 0, aν21 = aν22 = 1/2, (5.69)

bµ1 = bµ2 =
1

2
, bν1 = bν2 =

1

2
, (5.70)

corresponding to the implicit midpoint rule for the µ-equation and the trapezoidal rule for the ν-

equation in (5.68). The modifications to the partitioned Runge-Kutta scheme concerns the formulae

for the slopes, (5.61)-(5.64). Because of the time-levels at which the matrices K and S are evaluated,

it is not possible to define Butcher coefficients cµi and cνi such that

κn,ij = fµ(Xn,i
j ,Y n,i

j , tn + cµi h),

`n,ij = fν(Xn,i
j ,Y n,i

j , tn + cνi h).

Proof. See Appendix .16.

Only the matrices K and S depend explicitly on α in the discrete Lagrangian. When the

saddle point conditions (5.56) and (5.57) are satisfied, we can therefore calculate the gradient of

Gh by differentiating (5.53),

∂Gh

∂αr
=
∂Lh

∂αr
, r = 0, 1, . . . , E − 1.

This relation leads to the following lemma.

Lemma 5.4.2. Let Lh be the discrete Lagrangian defined by (5.53). Assume that (unj ,v
n
j ,U

n,i
j ,V n,i

j )

are calculated according to the Störmer-Verlet scheme for a given parameter vector α. Furthermore,

assume that (µnj ,ν
n
j ,X

n
j ,Y

n,i
j ) satisfy the adjoint time-stepping scheme in Lemma 5.4.1, subject to

the terminal conditions

µMj = − 2

E2

(
Re(OV h)duj − Im(OV h)dvj

)
, νMj = − 2

E2

(
Re(OV h)dvj + Im(OV h)duj

)
,
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and the forcing functions

∂J h

∂Un,1
j

=
h

T
WUn,1

j ,
∂J h

∂Un,2
j

=
h

T
WUn,2

j

∂J h

∂V n,1
j

=
h

T
WV n,1

j ,
∂J h

∂V n,2
j

= 0.

Then, the saddle-point conditions (5.56) and (5.57) are satisfied and the gradient of the objective

function (5.52) is given by

∂Gh

∂αr
=
h

2

E−1∑
j=0

M−1∑
n=0

{〈
S′nU

n,1
j + S′n+1U

n,2
j − (K ′n +K ′n+1)V n,1

j ,Xn
j

〉
2

+
〈
K ′n+1/2U

n,1
j + S′n+1/2V

n,1
j ,Y n,1

j

〉
2

+
〈
K ′n+1/2U

n,2
j + S′n+1/2V

n,1
j ,Y n,2

j

〉
2

}
, (5.71)

where S′n = ∂S/∂αr(tn), K ′n+1/2 = ∂K/∂αr(tn+1/2), etc.

Proof. See Appendix .17.

As a result of Lemma 5.4.2, all components of the gradient can be calculated from

(unj ,v
n
j ,U

n,i
j ,V n,1

j ) and the adjoint variables (µnj ,ν
n
j ,X

n
j ,Y

n,i
j ). The first set of variables are

obtained from time-stepping the Störmer-Verlet scheme forward in time, while the second set of

variables follow from time-stepping the adjoint scheme backward in time.

We can avoid storing the time-history of (unj ,v
n
j ,U

n,i
j ,V n,1

j ) by using the time-reversibility

of the Störmer-Verlet scheme. However, in order to do so, we must first calculate the terminal

conditions (uMj ,v
M
j ) by evolving (5.42)-(5.48) forwards in time. The time-stepping can then be

reversed and the gradient of the objective function (5.71) can be accumulated by simultaneously

time-stepping the adjoint system (5.59)-(5.67) backwards in time.

5.5 Numerical optimization

Our numerical solution of the optimal control problem is based on the general purpose

interior-point optimization package IPOPT [106]. This open-source library implements a primal-

dual barrier approach for solving large-scale nonlinear programming problems, i.e., it minimizes

an objective function subject to inequality (barrier) constraints on the parameter vector. Because
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the Hessian of the objective function is costly to calculate, we use the L-BFGS algorithm [91] in

IPOPT, which only relies on the objective function and its gradient to be evaluated. Inequality

constraints that limit the amplitude of the parameter vector α are enforced internally by IPOPT.

The routines for evaluating the objective function and its gradient are implemented in the Ju-

lia programming language [24], which provides a convenient interface to IPOPT. Given a parameter

vector α, the routine for evaluating the objective function solves the Schrödinger equation with the

Störmer-Verlet scheme and evaluates Gh(α) by accumulation. The routine for evaluating the gradi-

ent first applies the Störmer-Verlet scheme to calculate terminal conditions for the state variables.

It then proceeds by accumulating the gradient ∇αGh by simultaneous reversed time-stepping of the

discrete adjoint scheme and the Störmer-Verlet scheme. These two fundamental routines, together

with functions for setting up the Hamiltonians, estimating the time step, setting up constraints

on the parameter vector, post-processing and plotting of the results have been implemented in the

software package Juqbox, which was used to generate the numerical results below.

The adjoint gradient implementation has been verified against a centered finite difference

approximation of the discrete objective function by perturbing each component of the parameter

vector. To further verify our implementation, we also calculated the discrete gradient by differen-

tiating the Störmer-Verlet scheme with respect to each component of the parameter vector. This

gradient agreed with the adjoint gradient to within 11-12 digits.

5.5.1 A CNOT gate on a single qudit with guard levels

To test our methods on a quantum optimal control problem, we consider realizing a CNOT

gate on a single qudit with four essential energy levels and two guard levels. The qudit is modeled

in the rrotating frame of reference (with detuning frequencies ∆1 = ∆2 = 0) using the system and

control Hamiltonians (5.15) and (5.16), respectively. We set the fundamental frequency ω1/2π =

4.10336 GHz and self-Kerr coefficient ξ1/2π = 0.2198 GHz. We parameterize the two control

functions using B-splines with carrier waves and choose the frequencies to be Ω1 = 0, Ω2 = −ξ1

and Ω3 = −2ξ1. In the rotating frame, these frequencies correspond to transitions between the
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ground state and the first exited state, the first and second excited states and the second and third

excited states. We discourage population of the fourth and fifth excited states using the weight

matrix W = diag[0, 0, 0, 0, 0.1, 1.0] in J h2 , see (5.6). We use D1 = 10 basis functions per frequency

and control function, resulting in a total of D = 60 parameters. The amplitudes of the control

functions are limited by the constraint

‖α‖∞ := max
1≤r≤D

|αr| ≤ αmax. (5.72)

We set the gate duration to T = 100 ns and estimate the time step using the technique in Sec-

tion 5.3.2. To guarantee at least CP = 40 time steps per period, we use M = 8, 796 time steps,

corresponding to h ≈ 1.136 · 10−2 ns.

As initial guess for the elements of the parameter vector, we use a random number generator

with a uniform distribution in [−0.01, 0.01]. In Figure 5.2 we present the convergence history with

the two parameter thresholds αmax/2π = 4 MHz and 3 MHz, respectively.

Figure 5.2: Convergence of the IPOPT iteration for the CNOT gate with the parameter constraint

‖α‖∞ ≤ αmax. Here, αmax/2π = 4 MHz (left) and αmax/2π = 3 MHz (right).

We show the objective function G, decomposed into J h1 and J h2 , together with the norm of the

dual infeasibility, ‖∇αG − z‖∞, that IPOPT uses to monitor convergence, see [106] for details. For

the case with αmax/2π = 3 MHz, IPOPT converges well and needs 126 iteration to reduce the
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dual infeasibility to 10−5, which was used as convergence criteria. However, when the parameter

constraint is relaxed to αmax/2π = 4 MHz, the convergence of IPOPT stalls after about 100

iterations and is terminated after 200 iterations.

For the converged solution with parameter constraint αmax/2π = 3 MHz, the two parts of

the objective function are J h1 ≈ 1.47 · 10−4 and J h2 ≈ 4.72 · 10−5, corresponding to a trace fidelity

greater than 0.9998. The population of the guard states remains small for all times and initial

conditions. In particular, the “forbidden” state |5〉 has a population that remains below 4.04 ·10−7,

see Figure 5.3.

Figure 5.3: The population of the “forbidden” state |5〉 as function of time for the four initial

conditions of the CNOT gate. Here, αmax/2π = 3 MHz.

The optimized control functions are shown in Figure 5.4 and the population of the essential

states, corresponding to the four initial conditions of the CNOT gate, are presented in Figure 5.5.
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Figure 5.4: The rotating frame control functions p(t) (blue) and q(t) (orange) for realizing a CNOT

gate with D1 = 10 basis function per carrier wave and three carrier wave frequencies. Here,

αmax/2π = 3 MHz.
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Figure 5.5: The population of the states |0〉 (blue), |1〉 (orange), |2〉 (green) and |3〉 (purple), as

function of time, for each initial condition of the CNOT gate. Here, αmax/2π = 3 MHz.

Even though the dual infidelity does not reach the convergence criteria with the parameter

threshold αmax/2π = 4 MHz, the resulting control functions give a very small objective function.

Here, J h1 ≈ 8.56 · 10−5 and J h2 ≈ 4.15 · 10−5, corresponding to a trace fidelity greater than 0.9999.

The population of the “forbidden” state |5〉 has a population that remains below 3.39 · 10−7.

5.5.2 The Hessian of the objective function

The numerical results shown in Figure 5.2 illustrate that the convergence properties of the

optimization algorithm depend on the parameter constraints. To gain clarity into the local land-

scape of the optima we study the Hessian of the objective function. Let the optima correspond

to the parameter vector α∗. Based on the adjoint scheme for calculating the gradient, we can

approximate the elements of the Hessian matrix using a centered finite difference approximation,

∂2Gh(α∗)

∂αj∂αk
≈ 1

2ε

(
∂Gh

∂αj
(α∗ + εek)−

∂Gh

∂αj
(α∗ − εek)

)
:= Lj,k, (5.73)



152

for j, k = 1, 2, . . . , D. To perform this calculation, the gradient must be evaluated for the 2D

parameter vectors (α∗ ± εek). Because the objective function and the parameter vector are real-

valued, the gradient and the Hessian are also real-valued. Due to the finite difference approximation,

the matrix L is only approximately equal to the Hessian. The accuracy in L is estimated in Table 5.1

by studying the norm of its asymmetric part, which is zero for the Hessian.

ε ‖0.5(L+ LT )‖F ‖0.5(L− LT )‖F
10−4 4.95 · 103 1.99 · 10−4

10−5 4.95 · 103 2.01 · 10−6

10−6 4.95 · 103 1.46 · 10−6

10−7 4.95 · 103 1.47 · 10−5

Table 5.1: The Frobenius norm of the symmetric and asymmetric parts of the approximate Hessian,

L, for the case αmax/2π = 3.0 MHz.

Based on this experiment we infer that ε = 10−6 is appropriate to use for approximating the

Hessian in (5.73). To eliminate spurious effects from the asymmetry in the L matrix, we study

the spectrum of its symmetric part, Ls = 0.5(L + LT ). Because it is real and symmetric, it has a

complete set of eigenvectors and all eigenvalues are real.

The eigenvalues of the Hessian are shown in Figure 5.6 for both values of the parameter

threshold, αmax.
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Figure 5.6: The eigenvalues of the symmetric part of the approximate Hessian, 0.5(L + LT ),

evaluated at the optima for the parameter thresholds αmax/2π = 4 MHz (blue triangles) and

αmax/2π = 3 MHz (orange circles). The positive eigenvalues are shown on a log-scale on the left

and the small eigenvalues are shown on a linear scale on the right.

Two properties of the spectra are noteworthy. First, a few eigenvalues are negative. This

may be an artifact related to the elements of the parameter vector that are close to their bounds.

As a result the landscape of the objective function may not be accurately represented by the

corresponding components of the Hessian. The second interesting property is that the 15 largest

eigenvalues are significantly larger than the rest. This indicates that the control functions are

essentially described by the 15 eigenvectors associated with those eigenvalues. As a result, the

objective function varies much faster in those directions than in the directions of the remaining 45

eigenvectors and this may hamper the convergence of the optimization algorithm in that subspace.

However, most of those 45 eigenvalues become larger when the parameter threshold is reduced from

αmax/2π = 4 MHz to αmax/2π = 3 MHz. This indicates that the constraints on the parameter

vector have a regularizing effect on the optimization problem and may explain why the latter case

converges better (see Figure 5.2).

5.5.3 Risk-neutral controls

In practice the entries of the Hamiltonian may have some uncertainty, especially for higher

energy levels, and it is desirable to design control pulses that are more robust to noise. There
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are several ways to design noise resilient controls, including robust optimization methods, in which

a min-max problem is solved [54], or risk-neutral/averse optimization approaches that minimize

the expectation of a utility function based on the original objective function subject to uncertain

parameters [55].

In this section we consider a risk-neutral strategy to design a |0〉 ↔ |2〉 SWAP gate on a

single qubit (Q = 1), with three essential levels and one guard level. Let ε ∼ Unif(−εmax, εmax)

be a uniform random variable for some εmax > 0. As a simple example, we consider the uncertain

system Hamiltonian Hu
s (ε) = Hrw

s + H ′(ε) where Hrw
s is given by (5.15), and H ′(ε) is a diagonal

perturbation:

H ′(ε)

2π
=



0

ε/100

ε/10

ε


.

Here, no perturbation is imposed on the control Hamiltonian (5.16). From these assumptions follow

that the uncertain system Hamiltonian has expectation E[Hu
s (ε)] = Hrw

s . We may correspondingly

update the original objective function, G(α, Hrw
s ), to the risk-neutral utility function G̃(α) =

E[G(α, Hu
s (ε))]. Given the simple form of the random variable ε, we may compute G̃ by quadrature:

E[G(α, Hu
s (ε))] =

∫ εmax

−εmax

G(α, Hu
s (ε)) dε ≈

M∑
k=1

wkG(α, Hu
s (εk)), (5.74)

where wk and εk are the weights and collocation points of a quadrature rule.

For the following example, we compare the optimal control obtained using the standard

optimization procedure (no noise) and a risk-neutral control, in which the utility function (5.74)

is computed using the Gauss-Legendre quadrature with N = 9 collocation points and εmax = 10

MHz. We set the gate duration to T = 300 ns, the maximum allowable amplitude to αmax/2π = 12

MHz, the fundamental frequency to ω1/2π = 4.10336 GHz, with detuning frequency ∆1 = 0, and

the self-Kerr coefficient to ξ1/2π = 0.2198 GHz.

The control functions are constructed using two carrier waves with frequencies Ω1,1 = 0
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and Ω1,2 = −ξ1 for both the “noise-free” (NF) and “risk-neutral” (RN) cases. In each case we

use D1 = 12 splines per control and carrier wave frequency for a total of D = 48 splines. We

additionally constrain the controls to start and end at zero. We set the tolerance for L-BFGS

to 10−5, the maximum iteration count to 150, and use a maximum of five previous iterates to

approximate the Hessian at each iteration. For the noise-free and risk-neutral optimized control

functions, we use the perturbed Hamiltonian Hu
s (ε) to evaluate the objective function G, for evenly

spaced ε in the range [−30, 30] MHz. The results are shown in Figure 5.7.

Figure 5.7: Infidelity objective (J1) and guard level objective (J2) as function of ε in Hu
s (ε). Here

‘NF’ and ‘RN’ correspond to the “Noise-Free” and “Risk-Neutral” cases.

From Figure 5.7 we note that the optimal control corresponding to the noise-free approach

obtains the smallest infidelity for ε = 0, but it grows rapidly for |ε| > 0. By comparison, the optimal

control found with the risk-neutral approach is much less sensitive to noise. We plot the control

functions for both cases in Figure 5.8.
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Figure 5.8: Control functions (without carrier waves) for the cases: “noise-free” (top), and “risk-

neutral” (bottom). Here, pk,n(t) and qk,n(t) are defined in (5.27).

Note that the risk-neutral controls (bottom panel) have larger amplitudes compared to the noise-

free controls (top panel), indicating a potential drawback of the risk-neutral approach. However, a

more systematic study of this issue is needed and left for future work.

5.6 Comparing Juqbox with QuTiP/pulse optim and Grape-TF

The QuTiP/pulse optim package is part of the QuTiP [71] framework and implements the

GRAPE algorithm in the Python language. The Grape-TF code (TF is short for TensorFlow [2]) is

also implemented in Python and provides an enhanced implementation of the GRAPE algorithm,

as described by Leung et al. [78]. It is callable from QuTiP and shares a similar problem setup

with the pulse optim function.

To compare the Juqbox code with pulse optim and Grape-TF, we consider a set of SWAP

gates. These gates transform the ground state |0〉 to excited state |d〉, and vice versa. The trans-
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formation can be described by the unitary matrix

Vg =



0 0 · · · 0 1

0 1 0 · · · 0

...
. . .

. . .
. . .

...

0 · · · 0 1 0

1 0 · · · 0 0


∈ C(d+1)×(d+1), (5.75)

which involves E = d + 1 essential states. To evaluate how much leakage occurs to higher energy

levels, we add one guard (forbidden) level (G = 1) and evolve a total of N = d + 2 states in

Schrödinger’s equation. As before, the guard level is left unspecified in the target gate transforma-

tion. We consider implementing the SWAP gates on a multi-level qudit that can be described by

the fundamental frequency ω1/2π = 4.8 GHz and the self-Kerr coefficient ξ1/2π = 0.22 GHz. We

apply the rotating wave approximation, where the angular frequency of the rotation is ω1, result-

ing in the Hamiltonian model (5.15) and (5.16). As a realistic model for current superconducting

quantum devices, we impose the control amplitude restrictions

maxt|d(t;α)| ≤ c∞,
c∞
2π

= 9 MHz, (5.76)

in the rotating frame of reference.

5.6.1 Setup of simulation codes

QuTiP/pulse optim can minimize the target gate fidelity, J1, but does not suppress occupa-

tion of higher energy states. Thus, it does not minimize terms of the type J2. As a proxy for J2,

we append one additional energy level to the simulation and measure its occupation as an estimate

of leakage to higher energy states. In pulse optim, the control functions are discretized on the same

grid in time as Schrödinger’s equation and no smoothness conditions are imposed. In our tests, we

use a random initial guess for the parameter vector.

Grape-TF discretizes the control functions on the same grid in time as Schrödinger’s equation.

It minimizes an objective function that consists of a number of user-configurable parts. In our test,
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we minimize the gate infidelity (J1) and the occupation of one guard (forbidden) energy level

(similar to J2). To smooth the control functions in time, the objective function also contains

additional terms to minimize their first and second time derivatives. The various parts of the

objective function are weighted together by user-specified coefficients. The gradient of the objective

function is calculated using the automatic differentiation (AD) technique, as implemented in the

TensorFlow package. In our tests, we use a random initial guess for the control vector.

In Juqbox, we trigger the first d transition frequencies in the system Hamiltonian by using d

carrier waves in the control functions, with frequencies

Ω1,k = (k − 1)(−ξ1), k = 1, 2, . . . , Nf , Nf = d.

Similar to pulse optim and Grape-TF, a pseudo-random number generator is used to construct the

initial guess for the parameter vector.

The pulse optim and Juqbox simulations were run on a Macbook Pro with a 2.6 GHz Intel

iCore-7 processor. To utilize the GPU acceleration in TensorFlow, the Grape-TF simulations were

run on one node of the Pascal machine at Livermore Computing, where each node has an Intel

XEON E5-2695 v4 processor with two NVIDIA P-100 GPUs.

5.6.2 Numerical results

A SWAP gate where the control functions meet the control amplitude bounds (5.76) can

only be realized if the gate duration is sufficiently long. Furthermore, the minimum gate duration

increases with d. For each value of d, we used numerical experiments to determine a duration

Td such that at least two of the three simulation codes could find a solution with a small gate

infidelity. For Juqbox, we used the technique in Section 5.3.2 with CP = 80 to obtain the number

of time steps. The number of control parameters follow from D = 2NfD1, where Nf = d equals

the number of carrier wave frequencies and D1 is the number of B-splines per control functions.

Here, D1 = 10 for d = 3, 4, 5 and D1 = 20 for d = 6. For pulse optim and Grape-TF, we calculate

the number of time steps based on the shortest transition period, corresponding to the highest
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transition frequency in the system. We then use 40 time steps per shortest transition period to

resolve the control functions. For both GRAPE methods there are 2 control parameters per time

step. The main simulation parameters are given in Table 5.2.

# time steps # parameters

d Td [ns] Juqbox GRAPE Juqbox GRAPE

3 140 14,787 4,480 60 8,960

4 215 37,843 7,568 80 15,136

5 265 69,962 11,661 100 23,322

6 425 157,082 22,441 240 44,882

Table 5.2: Gate duration, number of time steps (M) and total number of control parameters (D)
in the |0〉 ↔ |d〉 SWAP gate simulations. The number of time steps and control parameters are the
same for pulse optim and Grape-TF.

Optimization results for the pulse optim, Grape-TF and Juqbox codes are presented in Ta-

bles 5.3, 5.4 and 5.5.

d J ∗1 |ψ(d+1)|2∞ |p|∞ [MHz] |q|∞ [MHz] # iter CPU [s]

3 4.35e-6 9.41e-3 9.00 9.00 38 30

4 3.91e-5 1.20e-2 9.00 9.00 93 108

5 1.57e-4 8.77e-3 9.00 9.00 215 385

6 1.76e-3 4.48e-2 9.00 9.00 246 894

Table 5.3: QuTiP/pulse optim results for |0〉 ↔ |d〉 SWAP gates. Note the larger infidelity and

guard state population for d = 6.

d J1 |ψ(d+1)|2∞ |p|∞ [MHz] |q|∞ [MHz] # iter CPU [s]

3 8.76e-6 4.03e-3 6.98 8.83 78 2,062

4 1.52e-5 3.39e-3 6.87 6.54 128 10,601

5 2.80e-5 1.78e-3 7.21 7.62 161 28,366

6 4.89e-1 2.33e-5 0.73 0.74 93 81,765

Table 5.4: Grape-TF results for |0〉 ↔ |d〉 SWAP gates. Note the very large infidelity for d = 6.

These simulations used two NVIDIA P-100 GPUs to accelerate TensorFlow.
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d J1 |ψ(d+1)|2∞ |p|∞ [MHz] |q|∞ [MHz] # iter CPU

3 2.71e-5 1.92e-3 7.59 8.99 177 55

4 4.91e-5 1.23e-3 7.78 5.33 166 151

5 4.95e-5 1.25e-3 7.42 7.24 173 291

6 7.41e-6 4.41e-3 4.55 5.39 229 1255

Table 5.5: Juqbox results for |0〉 ↔ |d〉 SWAP gates.

The pulse optim code generates piecewise constant control functions that are very noisy and may

therefore be hard to realize experimentally. To obtain a realistic estimate of the resulting dynamics,

we interpolate the optimized control functions on a grid with 20 times smaller time step and use

the mesolve() function in QuTiP to calculate the evolution of the system from each initial state.

We then evaluate the gate infidelity using the evolved states at the final time, denoted by J ∗1 in

Table 5.3. Since the control functions from Grape-TF and Juqbox are significantly smoother, we

report the target gate fidelities as calculated by those codes. For the |0〉 ↔ |3〉, |0〉 ↔ |4〉 and

|0〉 ↔ |5〉 SWAP gates, all three codes produce control functions with very small gate infidelities.

We note that the population of the guard level, |ψ(d+1)|2, is about an order of magnitude larger

with pulse optim than with Juqbox; the guard level population from Grape-TF are somewhere in

between. The most significant difference between the results occur for the d = 6 SWAP gate. Here,

the Grape-TF code fails to produce a small gate infidelity after running for almost 23 hours and the

pulse optim code results in a gate fidelity that is about 2 orders of magnitude larger than Juqbox.

While pulse optim and Juqbox require comparable amounts of CPU time to converge, the

Grape-TF code is between 50-100 times slower, despite the GPU acceleration.

We proceed by analyzing the optimized control functions and take the |0〉 ↔ |5〉 SWAP gate

as a representative example. In this case, the relevant transition frequencies in the laboratory frame

of reference are

fk =
1

2π
(ω1 − kξ1) , k = 0, 1, 2, 3, 4. (5.77)

To compare the smoothness of the optimized control functions, we study the Fourier spectra of the

laboratory frame control functions, see Figure 5.9.
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(a) QuTiP/pulse optim

(b) Grape-TF

(c) Juqbox

Figure 5.9: Magnitude of the Fourier spectrum of the laboratory frame control function for the

|0〉 ↔ |5〉 SWAP gate.
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We first note that pulse optim produces a significantly noisier control function compared to the

other two codes. The control function from Grape-TF is significantly smoother, even though

its spectrum includes some noticeable peaks at frequencies that do not correspond to transition

frequencies in the system. The Juqbox simulation results in a laboratory frame control function

where each peak in the spectrum corresponds to a transition frequency in the Hamiltonian.

5.7 Conclusions

In this chapter we developed numerical methods for optimizing control functions for realizing

logical gates in closed quantum systems where the state is governed by Schrödinger’s equation. By

asymptotic expansion, we calculated the resonant frequencies in the system Hamiltonian, corre-

sponding to transitions between energy levels in the state vector. We introduced a novel param-

eterization of the control functions using B-spline basis functions that act as envelopes for carrier

waves, with frequencies that match the transition frequencies. This approach allows the number of

control parameters to be independent of, and significantly smaller than, the number of time steps

for integrating Schrödinger’s equation.

The objective function in the optimal control problem consists of two parts: the infidelity

of the final gate transformation and a time-integral for evaluating leakage to higher energy levels.

We apply a “discretize-then-optimize” approach and outline the derivation of the discrete adjoint

equation that is solved to efficiently calculate the gradient of the objective function.

To demonstrate our approach, we optimized the control functions for a CNOT gate with two

guard states, resulting in a gate fidelity exceeding 99.99%. Having a moderate number of control

parameters enabled us to study the spectrum of the Hessian of the objective function at an optima.

We found that imposing tighter bounds on the parameter vector results in a Hessian with larger

eigenvalues and thus improves the convergence of the optimization algorithm.

Based on a simple noise model, we also generalized the proposed method to calculate risk-

neutral controls that are resilient to uncertainties in the Hamiltonian model. The results are

promising and indicate that a more systematic study of optimization under uncertainty can yield
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controls that are robust to noise in quantum systems. We finally compared the performance of

the proposed method, implemented in the Juqbox package [53], and two implementations of the

GRAPE algorithm: the pulse optim method in QuTiP [71] and Grape-TensorFlow [78]. The codes

were compared on a set of SWAP gates on a single qudit. Here, Juqbox was found to run 50-100

times faster than Grape-TensorFlow and produce control functions that are significantly smoother

than pulse optim.

In future work, we intend to generalize our approach to solve optimal control problems for

larger quantum systems.



Chapter 6

IBM Open Science Prize – SWAP Gate Challenge

On November 30, 2020, IBM announced an open science prize competition aimed at improving

the fidelity of a SWAP gate between qubits 5 and 6 on their Quantum device named “Casablanca.”

The details of the SWAP gate problem was outlined in a Jupyter notebook, which utilizes the IBM

developed open source package Qiskit. The participants were allowed to work in teams with up to

five people and restricted to only use open source software in solving the problem. The competition

concluded on April 16, 2021, and on June 14, 2021, it was announced that there were no winners

as no team achieved the desired 50% reduction in error of the SWAP gate.

As a case study in the use of the optimal control techniques outlined in Chapter 5, in this

(brief) chapter we outline an approach for the SWAP gate challenge. The approach in this chapter

is based on the quantum optimal control techniques implemented in the open source packages

Juqbox.jl (the methods for which were outlined in Chapter 5) and Quandary [64]. The results

from the optimal control approach are only as good as the accuracy in the description of the

quantum system dynamics, characterized by a Hamiltonian model that was provided by IBM.

Based on the calibrated control pulses that IBM provide for their standard gate set, we describe a

reverse engineering approach to calibrate our computational model, including effects of cross-talk.

Techniques were developed to translate between Qiskit’s pulse representation and the B-spline

formulation used in Juqbox and Quandary. The fidelity of the optimized pulse sequences were

finally estimated using Qiskit’s randomized benchmarking (RB) techniques.
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6.1 Hamiltonian model

The Hamiltonian model used in this study is based on work by Magesan and Gambetta [84].

In [84], the authors considered a system of two transmons coupled by a bus resonator. The bus

resonator is modeled as a harmonic oscillator with fundamental frequency ωr and each transmon

is coupled to the bus resonator by a Jaynes-Cummings Hamiltonian with coupling strength gj .

Let the |01〉 transition frequencies of the transmons be ωj . It is assumed that the coupling is in

the dispersive regime, which means that resonator frequency is sufficiently detuned from the |01〉

transition frequencies to make |ωj − ωr| � |gj |.

After transforming the Hamiltonian to a frame rotating with frequency ωr in all three sub-

systems (two transmons and a bus resonator), the system and control Hamiltonians become (for

notational convenience we set ~ = 1)

Hsys =
2∑
j=1

(
(ωj − ωr) b†jbj +

∆j

2
b†jb
†
jbjbj

)
+ gj

(
b†jc+ bjc

†
)
, (6.1)

Hctrl(t) =

2∑
j=1

Re(eiω
rtdj(t))

(
e−iω

rtbj + eiω
rtb†j

)
, (6.2)

where bj is the lowering operator for the j-th transmon and c is the lowering operator for the bus

resonator. The above model is an ideal starting point for an optimal control approach for designing

a SWAP gate. In practice, unfortunately, the resonator frequency ωr and the coupling coefficients

gj are not readily available from the IBM backend description of the Casablanca system.

Magesan and Gambetta [84] proceed by deriving a simplified Hamiltonian model using the

following steps: 1) reorder the state vector into blocks of increasing transmon excitation number,

2) adiabatically eliminate the terms that couple the blocks, 3) project the Hamiltonian onto the

zero-excitation subspace of the bus resonator. These steps results in an effective Hamiltonian for

the two transmon system given in Equation (2.12) of [84]. This model is completely specified for

the Casablanca system as all parameters can be accessed through the Qiskit interface. For these

reasons, it is used as a starting point in our modeling effort. Based on this model, the lab frame



166

system Hamiltonian for qubits 5 and 6 of Casablanca is

Hsys =

6∑
j=5

(
ω̃j b

†
jbj +

∆j

2
b†jb
†
jbjbj

)
+ j56

(
b†5b6 + b5b

†
6

)
. (6.3)

Here ω̃j is the dressed frequency of the j-th transmon, b5 = I ⊗ a, and b6 = a ⊗ I, where the

lowering matrix for a single system is denoted by a. For simplicity, in the following we assume we

use the dressed frequencies only and the tildes on the frequencies will be suppressed. Based on

Equation (2.14) in [84] and the Hamiltonian entry in the backend of the Casablanca system, the

lab frame control Hamiltonian is

Hctrl(t) = Ωd,5

(
D5(t) + U

(5,6)
10 (t)

)
(b5 + b†5) + Ωd,6

(
D6(t) + U

(6,5)
11 (t)

)
(b6 + b†6), (6.4)

where

D5(t) = Re
(
eiω5td5(t)

)
, U

(5,6)
10 (t) = Re

(
eiω6tu10(t)

)
, (6.5)

D6(t) = Re
(
eiω6td6(t)

)
, U

(5,6)
11 (t) = Re

(
eiω5tu11(t)

)
. (6.6)

For conciseness we have absorbed the phase factors eiφ into the normalized control functions d5

through u11. Note that U10 is applied to qubit 5 but uses qubit 6’s transition frequency. Correspond-

ingly, U11 is applied to qubit 6, but uses qubit 5’s transition frequency. Because Re(z) = 0.5(z+ z̄)

for z ∈ C, the control Hamiltonian can also be written

Hc(t) =
1

2
Ωd,5

(
eiω5td5(t) + e−iω5td̄5(t) + eiω6tu10(t) + e−iω6tū10(t)

)
(b5 + b†5)

+
1

2
Ωd,6

(
eiω6td6(t) + e−iω6td̄6(t) + eiω5tu11(t) + e−iω5tū11(t)

)
(b6 + b†6). (6.7)

We apply a rotating frame transformation using the same frequency of rotation for both

sub-systems (e.g. ωrot = ω5). In this frame, the system Hamiltonian becomes

H̃sys = RHsysR
† + iR†Ṙ, (6.8)

=

6∑
j=5

(
δj b
†
jbj +

∆j

2
b†jb
†
jbjbj

)
+ j56

(
b†5b6 + b5b

†
6

)
, (6.9)
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where we have defined δj = ωj −ωrot for j = 5, 6. After applying the rotating wave approximation,

the control Hamiltonian becomes

H̃c(t) ≈
Ωd,5

2

(
eiδ5td5(t) + eiδ6tu10(t)

)
b5 +

Ωd,6

2

(
eiδ6td6(t) + eiδ5tu11(t)

)
b6 + H.c., (6.10)

where H.c. stands for the Hermitian conjugate.

6.2 Optimal control with Juqbox.jl and Quandary

We use numerical optimization in the open source packages Juqbox.jl [52] and Quandary [64]

to determine the control functions d5(t), d6(t), u10(t), and u11(t) for realizing the SWAP gate

transformation,

VSW =



1

0 1

1 0

1


. (6.11)

Since higher energy levels play an important role in a cross-resonance gate, we model each transmon

with 4 energy levels leading to a state vector with N = 16 elements. In the closed system setting, the

time-evolution of the quantum system is unitary, yielding the transformation ψ(t) = U(t,α)ψ(0)

for any initial quantum state ψ(0). Here, α ∈ CD is the vector of control parameters and U(t,α) ∈

CN×N is the unitary solution matrix, which solves Schrödinger’s equation

U̇(t,α) = −iH̃(t,α)U(t,α) 0 < t ≤ T, with U(0) = IN , (6.12)

where IN is the N ×N identity matrix and H̃(t,α) = H̃sys + H̃c(t,α) denotes the Hamiltonian in

the rotating frame.

The main target of the optimization is to find the vector of control parameters α that

minimizes the difference between the target SWAP gate matrix, VSW , and the final-time solution

operator, U(T,α), projected onto the two lowest energy levels of each transmon. The difference
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between the matrices is measured in terms of the trace infidelity

J1(α) = 1− 1

E2

∣∣∣Tr
(
V †SW Ũ(T,α)

)∣∣∣2 , Ũ = PUP †. (6.13)

Here, U(t,α) solves Schrödinger’s equation (6.12) and P extracts the first two energy levels of each

transmon from the full state vector. Thus, only E = 4 columns of the solution matrix U are used

for evaluating the trace infidelity. The time-averaged population of the highest energy level in each

transmon, J2(α), is used to discourage leakage to non-computational levels of the transmons. The

optimization then minimizes the total objective function J1 + J2, subject to constraints on the

amplitude of the control functions, as outlined in Chapter 5.

Both Juqbox and Quandary represent the control Hamiltonian in terms of their real and

imaginary components,

H̃ctrl(t) = p5(t)(b5 + b†5) + iq5(t)(b5 − b†5) + p6(t)(b6 + b†6) + iq6(t)(b6 − b†6). (6.14)

To identify the relation between the real-valued control functions (pk, qk) and the complex-valued

functions d5, d6, u10 and u11 in (6.10), it is convenient to first introduce the complex-valued

functions ζk(t),

ζk(t) =

Ns∑
L=1

αk,LB̂L(t), αk,L ∈ C. (6.15)

In Juqbox and Quandary, B̂L(t), L = 1, 2, . . . , Ns, are quadratic B-spline wavelets, uniformly spaced

in time. We define,

p5(t) + iq5(t) := eiδ5tζ5(t) + eiδ6tζ10(t), (6.16)

p6(t) + iq6(t) := eiδ6tζ6(t) + eiδ5tζ11(t). (6.17)

As there are four control functions, the total number of control parameters becomes D = 4Ns.

In the following, 30 B-spline coefficients were used to parameterize each control function. We

remark that the number of control parameters can be chosen independently of (and usually much

smaller than) the number of time steps for integrating Schrödinger’s equation (In this study we

used NT = 105, 625 time steps to integrate Schrödinger’s equation to time T = 668.4 ns).
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The functions ζk(t) allow the control Hamiltonian (6.14) to be written as

H̃c,c(t) =
(
eiδ5tζ5(t) + eiδ6tζ10(t)

)
b5 +

(
eiδ6tζ6(t) + eiδ5tζ11(t)

)
b6 + H.c. (6.18)

The uncalibrated relation between the control functions in Qiskit and Juqbox is found by comparing

(6.18) and (6.10),

d5(t) =
2

Ωd,5
ζ5(t), (6.19)

d6(t) =
2

Ωd,6
ζ6(t), (6.20)

u10(t) =
2

Ωd,5
ζ10(t), (6.21)

u11(t) =
2

Ωd,6
ζ11(t). (6.22)

6.2.1 Open system optimal control

To account for system-environment interactions, the numerical optimization with Juqbox can

be used as a starting point for optimal control with the Quandary code [64]. Quandary describes

open quantum systems using a density matrix ρ ∈ CN×N . The time evolution of ρ(t) is modeled

by Lindblad’s master equation

ρ̇(t) =− i (H(t)ρ(t)− ρ(t)H(t)) + L (ρ(t)) . (6.23)

Both decay and dephasing processes are modeled using the Lindblad terms:

L(ρ) =
6∑

k=5

2∑
l=1

LlkρL†lk −
1

2

(
L†lkLlkρ+ ρL†lkLlk

)
, (6.24)

where the collapse operators satisfy L1k := 1√
Tk1
ak (decay) and L2k := 1√

Tk2
a†kak (dephasing). Here,

T k1 and T k2 correspond to the decay and dephasing times for system k.

Quandary solves Lindblad’s master equation numerically by applying the implicit midpoint

time-stepping method, which is a symplectic, second-order time-integration scheme of Runge-Kutta

type. In order to derive the discrete adjoint equations, techniques from Algorithmic Differentiation

are applied to yield consistent and exact gradients of the objective function at costs that are inde-

pendent of the number of control parameters. The optimization problem is then solved iteratively
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using gradient updates, preconditioned by the L-BFGS algorithm to incorporate Hessian informa-

tion. Constraints on the maximum amplitudes of the control parameters are incorporated using

a line-search procedure that projects the gradient onto the linear box-constraints of maximally

allowed control amplitudes.

6.3 Rabi pulse calibrations

Qiskit support two types of channels that accept custom pulses: drive and control channels.

Pulses on the drive channels are specified in the following way:

Di(tj) = Re {exp(i2πfjdt+ φ)dj} . (6.25)

Here f is a frequency that can be chosen by the user; it defaults to the qubit transition frequency

for drive channels, and the frequency of the linked qubit for control channels. We additionally

have that φ is a phase, the time step is set to dt = 2/9 ns for the Casablanca system, and dj is

the non-dimensional, complex-valued control amplitude at time tj = j dt. For each channel, Qiskit

specifies the maximum allowable amplitude signal, Ωd,i. Absorbing the phase into the dimensionless

amplitude via d̃j = eiφdj , then

Ωd,iDi(tj) = Ωd,i

(
cos(2πfjdt)Re{d̃j} − sin(2πfjdt)Im{d̃j}

)
,

which gives the basic mapping between Qiskit and Juqbox:

p(tj) =
Re{d̃j}
2Ωd,i

, q(tj) =
Im{d̃j}
2Ωd,i

. (6.26)

To verify this mapping, we considered a Rabi pulse for a single qubit. With a single carrier-wave

with zero frequency in the rotating frame and two energy levels, with constant p = AJ , q = 0, half

a Rabi oscillation occurs in Juqbox simulations for the pulse duration

τp =
π

|AJ |
=⇒ |AJ | =

π

τp
.

Using Qiskit’s amplitude convention, the corresponding relation is

AQ = Re{d̃j} =
2π

τp
Ωd,i.
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The ratio between the amplitudes of the corresponding lab frame control signals in Qiskit and

Juqbox becomes

|AQ|
2|AJ |

= Ωd,i.

This implies that the amplitudes should be proportional to each other. Results from a Rabi

experiment on the Casablanca hardware are shown in Figure 6.1.

Figure 6.1: Results of the Rabi experiment on qubit 5 of the Casablanca hardware.

For the Casablanca hardware, the fitted line y = 1.014x− 1.9 · 10−4 has a slope that is close

to Ωd,5 ≈ 1.084. This study confirms that the drive channel amplitude Ωd,5 is almost perfectly

calibrated.

6.4 Gaussian square and DRAG pulses in Qiskit

We start by defining the zeroed Gaussian function, centered at time T/2:

gz(t;A, T, σ) =


A
(

exp
(
− (t−T/2)2

2σ2

)
− g0(T, σ)

)
, t ∈ [0, T ],

0, otherwise.

Here A is a complex-valued amplitude, T is the duration of the zeroed Gaussian, and σ is its stan-

dard deviation. Programmatically, however, the tails of the Gaussian are truncated by subtracting
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out the constant g0, defined by

g0(T, σ) = exp

(
−(T/2 + dt)2

2σ2

)
, where dt = 2

9 ns. (6.27)

Based on the zeroed Gaussian pulse, we can now define the Derivative Removal by Adiabatic Gate

(DRAG) pulse:

f(t;A, T, σ, β) = gz(t;A, T, σ) + iβ

(
−(t− T/2)

σ2

)
g(t;A, T, σ)︸ ︷︷ ︸

g′z(t)

,

where β is a correction amplitude. Finally, the Gaussian square pulse is defined by its amplitude

A, total duration T , and the duration of its constant part, w. Let the duration of the leading and

trailing ramp be r = (T − w)/2 > 0. Then,

s(t;A, T, σ, w) =



gz(t;A, 2r, σ)

1− g0(2r, σ)
, 0 ≤ t ≤ r,

A, r ≤ t ≤ r + w,

gz(T − t;A, 2r, σ)

1− g0(2r, σ)
, r + w ≤ t ≤ T.

6.5 Converting Qiskit pulses to B-splines with carrier waves

For many basic gates, Qiskit provides parametric representations of the pulse schedule re-

quired to realize the chosen gate. These provided pulses take the form (6.25). For simplicity,

suppose we have the signal D0 and wish to represent it in Juqbox/Quandary via B-splines with

carrier waves. Since each signal in Qiskit is associated with a single frequency we have

Ωd,0D0(tj) = Ωd,0

(
cos(2πfjdt)Re{d̃j} − sin(2πfjdt)Im{d̃j}

)
= 2p(tj) cos(ωtj)− 2q(tj) sin(ωtj).

The approximation of the real and imaginary parts of dj can be done independently, so that in the

following we focus on approximating the real part. This becomes a classical interpolation problem

Ωd,0

2
Re{dk} = p(tk) =

D1∑
j=1

αjBj(tk), ∀k = 1, 2, . . . , N,
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where N is the number of samples dk. This gives us the Vandermonde system

B1(t1) B2(t1) B3(t1) · · · BD1(t1)

B1(t2) B2(t2) B3(t2) · · · BD1(t2)

...
...

... · · ·
...

B1(tN ) B2(tN ) B3(tN ) · · · BD1(tN )


︸ ︷︷ ︸

RN×D1



α1

α2

...

αD1


=

Ωd,0

2



Re{d1}

Re{d2}
...

Re{dN}


,

where D1 is the number of B-splines used in the approximation. Given that the time points tk are

distinct and D1 = N the above system is uniquely solvable. We also note that at a given time tk

only three B-splines are non-zero so that for a large number of splines, D1, the above system is

sparse. Moreover, if we choose the interpolation points tk to be the centers of each B-spline and

pick D1 = N then the above is the tridiagonal system

3/4 1/8

1/8 3/4 1/8

. . .
. . .

. . .

. . .
. . . 1/8

1/8 3/4





α1

α2

...

αD1−1

αD1


=

Ωd,0

2



Re{d1}

Re{d2}
...

Re{dD1−1}

Re{dD1}


,

which can be solved in O(D1) time.

6.6 Reverse model calibration using X- and Cx-gates

The Casablanca system uses DRAG pulses to implement X-gates and a combination of Gaus-

sian square and DRAG pulses to implement Cx gates. As the pulse coefficients are updated during

each calibration of the system hardware, they can be used to calibrate the computational model

for the Casablanca hardware. Given the high fidelity of the corresponding gates, the pulses can be

used to engineer a mapping between the computational control functions we optimize with Juqbox

/ Quandary and the physical control functions that must be applied to the hardware.
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6.6.1 X-gates

The X-gate for qubit 5 is defined by the single DRAG pulse

d5(t) = f(t;A1, T, σ, β1),

for 0 ≤ t ≤ 160 · dt where dt = 2/9 ns. The X-gate for qubit 6 is also defined by the single DRAG

pulse

d6(t) = f(t;A2, T, σ, β2),

for 0 ≤ t ≤ 160 · dt. The parameters defining each DRAG pulse can be accessed using Qiskit by

querying the backend for Casablanca. The coefficients change slightly after each system calibration,

but the duration of the DRAG pulses appears to be fixed at 160 · dt. At some point during the

spring of 2021, the coefficients were

A1 = 0.17545065110530234,

A2 = 0.20674287767710134,

T = 160,

σ = 40,

β1 = 0.47609887200679674,

β2 = 1.9314472856919194.

The pulse schedules for the above X-gates are shown in Figure 6.2.
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Figure 6.2: The pulse schedule for an X gate on Casablanca for qubit 5 (left), and qubit 6 (right).

Only the d5(t) function is active during the X5-gate and only the d6(t) function is active

during the X6-gate, which allows the pulses to be calibrated independently. We want to improve

the calculated average gate fidelity by modifying the control Hamiltonian (6.10) according to

d5(t)→ ξ5d5(t), (6.28)

d6(t)→ ξ6d6(t), (6.29)

where ξ5 and ξ6 are calibration factors. We were unable to achieve small trace gate infidelities

based on (6.13). Upon closer examination, significant relative phase differences occurred between

the target unitary and the simulated unitary evolution, which could not be explained by the rotating

wave transformation. However, very good agreement in population was obtained. For this reason,

we use the averaged gate fidelity, defined by

Favg =
1

E

N∑
j=1

Tr|V †Ũ(T,α)|, (6.30)

in this calibration. Here V is the target gate unitary and Ũ is the projected solution matrix

for Schrödinger’s equation at final time T . The highest X-gate fidelities were obtained for the
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coefficients

ξ5 = 0.9927, ξ6 = 0.9909, (6.31)

indicating that the drive channels on the Casablanca system are very well calibrated. We remark

that ξ5Ωd,5 ≈ 1.08 is close to the slope 1.014 that was found in the Rabi calibration experiment in

Section 4.

6.6.2 Calibrating a cross-talk model using the Cx gates

The Casablanca backend holds calibrated pulse sequences for two CX-gates that involve

qubits 5 and 6: CX-56 (5 controls 6) and CX-65 (6 controls 5). These gates are implemented with

a combination of DRAG and Gaussian square pulses and use the control functions d5, d6 and u11

(but not u10), see Figure 6.3.
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Figure 6.3: The pulse schedule for a CNOT gate on Casablanca where qubit 5 is the control qubit

and qubit 6 is the target.

Since the control function u11 acts on qubit 6 but uses qubit 5’s frequency, the corresponding signal

may be subject to cross-talk. Following [84], we can account for this effect through the simple

model

u11(t)b6 → ξ11u11(t)b6 +Ace
iφcu11(t)b5, (6.32)

where ξ11 and Ac are cross-talk coefficients and φc is a phase shift that compensates for the physical

distance between qubits 5 and 6 on the chip. After a parameter space sweep, we found that

ξ11 = 2.02, Ac = 0.0583, φc = 1.2189, (6.33)
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result in gate fidelities of 0.994 for both the CX-56 gate and the CX-65 gate.

To complete our modeling we also need to handle potential cross-talk from control function

u10. In lieu of calibrated pulses, we use a symmetry argument to motivate the same cross-talk

model for u10 as for u11, i.e.,

u10(t)b5 → ξ10u10(t)b5 +Ace
iφcu10(t)b6, ξ10 = ξ11. (6.34)

As a result of the above calibrations, the modified Hamiltonian model becomes H̃comp(t) =

H̃sys + H̃c,c(t), where

H̃c,c(t) =
Ωd,5

2

(
eiδ5tξ5d5(t)b5 + eiδ6tu10(t)(ξ10b5 +Ace

iφcb6)
)

+
Ωd,6

2

(
eiδ6tξ6d6(t)b6 + eiδ5tu11(t)(ξ11b6 +Ace

iφcb5)
)

+ H.c. (6.35)

The Juqbox code represents the control Hamiltonian in terms of its real and imaginary

components, as described above. By identifying the coefficients between (6.18) and (6.35), we

arrive at the calibrated conversion

ζ5(t) =
Ωd,5

2
ξ5d5(t) +

Ωd,6

2
Ace

iφcu11(t), (6.36)

ζ6(t) =
Ωd,6

2
ξ6d6(t) +

Ωd,5

2
Ace

iφcu10(t), (6.37)

ζ10(t) =
Ωd,5

2
ξ10u10(t), (6.38)

ζ11(t) =
Ωd,6

2
ξ11u11(t). (6.39)

Thus, control functions (ζ5, ζ6, ζ10, ζ11) that are optimized with Juqbox should be converted to

Qiskit according to

d5(t) =
2

Ωd,5ξ5

(
ζ5(t)−Aceiφc

1

ξ11
ζ11(t)

)
, (6.40)

d6(t) =
2

Ωd,6ξ6

(
ζ6(t)−Aceiφc

1

ξ10
ζ10(t)

)
, (6.41)

u10(t) =
2

Ωd,5ξ10
ζ10(t), (6.42)

u11(t) =
2

Ωd,6ξ11
ζ11(t). (6.43)

The control pulses used by Qiskit are defined by inserting the above functions into (6.5)-(6.6).
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6.7 Implementation of custom pulses in Qiskit

In Juqbox/Quandary, each control signal is represented by a continuous approximation of

B-splines with carrier waves which we may simply evaluate at equispaced time points, tk = k dt

where dt = 2/9 ns. As the Juqbox/Quandary samples have units of rad/ns, we use the mapping

(6.26) to obtain the dimensionless amplitude samples d̃j that are required by Qiskit. Once we have

a set of dimensionless amplitude samples, we need to make Qiskit aware of our custom pulse. Our

chosen approach is to simply pass a non-basis element Clifford gate (such as the SWAP gate) to

randomized_benchmarking_seq as follows:

1 # Use standard swap gate for interleaved circuit

2 circ = QuantumCircuit (2)

3 circ.swap (0,1)

4 interleaved_elem = [circ]

5

6 # generate the RB circuit parameters

7 length_vector = np.arange (1 ,200 ,20)

8 nseeds = 5

9

10 rb_pattern = [[5 ,6]]

11

12 # Generate the RB circuits

13 _,_circs = randomized_benchmarking_seq(length_vector=length_vector ,

14 nseeds=nseeds ,

15 rb_pattern=rb_pattern ,

16 interleaved_elem=interleaved_elem)

With the interleaved circuits built, we then manually add our custom pulse to each element as

follows:

1 for circuits in circs:

2 for circuit in circuits:

3 circuit.add_calibration("swap", qubits =[5, 6], schedule=sched)
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where sched is a Schedule object containing our custom pulse. This approach allows us to avoid

issues with randomized_benchmarking_seq decomposing a custom gate while providing a custom

pulse that the transpiler respects when executing the sequence on the actual device. When down-

loading the associated JSON files with each RB job on IBM Quantum using this approach, it can

be seen that each custom pulse is assigned to a 64 bit hexadecimal string indicating the signal is

being used on the actual device.

A final practical matter with this approach is that directly adding the full custom waveform

as a single instruction when building a schedule can result in the error:

Waveform memory exceeds the maximum amount of memory currently available # [8018].

To avoid this error, we have built the full schedule by splitting each custom waveform in smaller

chunks of (at most) 160 complex-valued amplitudes.

6.8 Randomized benchmarking results

To reduce influence of state preparation and measurement (SPAM) errors, the fidelity of the

SWAP gate is estimated using randomized benchmarking. This functionality is provided by the

routine randomized_benchmarking_seq() in Qiskit. This routine constructs two sets of random-

ized circuits for testing purposes. The first is composed of standard gates and is used as a reference.

In the second set, the circuits are augmented by one or more interleaved gates, which in this case

corresponds to a custom SWAP gate. As described above, the custom pulse schedule is explicitly

inserted by calling add_calibration(), before transpiling each interleaved circuit. An example of

a short interleaved pulse schedule is shown in Figure 6.4.
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Figure 6.4: The pulse schedule for the first interleaved RB circuit.

The results of the non-interleaved and interleaved randomized benchmarking are processed

by the Qiskit function InterleavedRBFitter(). It fits the data for each case to an exponential

function and estimates the SWAP gate error as the difference in exponential decay between the

fitted functions. With 5 randomized samples per case, 1000 shots per circuit, and considering

circuit lengths in the range of 1-181, results from the QASM simulator are shown in Figure 6.5.
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Figure 6.5: Simulated results. The observed ground state population as function of the length of

the Clifford circuit. Here, the non-interleaved circuits are shown in blue and interleaved ones in

red. The estimated error per Clifford (EPC) is 2.36%.

In this case the estimated SWAP gate error was 2.36%.

To test the custom SWAP gate pulse sequence on physical hardware, we consider a random-

ized benchmarking sequence consisting of 5 sets of interleaved and 5 sets of non-interleaved circuits.

For each circuit, we take the average of 1000 separate shots/experiments. By inspecting the result-

ing state output histograms for the shortest interleaved circuits, we observe that the custom gate

suffers from some severe accuracy problems, see Figure 6.6.
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Figure 6.6: Classification results after 1000 shots in two of the randomized circuits with one inter-

leaved SWAP gate. Ideally the |00〉 state should have 100% of the population.

Due to the large spread in the ground state population, the InterleavedRBFitter() function

had problems fitting the data to an exponential decay. The estimated error per Clifford (EPC) was

−1.32 · 10−2, but with a very large standard deviation, see Figure 6.7.
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Figure 6.7: Randomized benchmarking results on the Casablanca hardware using the Interleave-

dRBFitter.

The large gate errors could well be due to some misinterpretation of the pulse schedules for

X and Cx gates. Another potential source of error is the Hamiltonian model.

6.9 Conclusion

As mentioned in the introduction of this chapter, no winners were selected for the IBM

SWAP gate challenge. It is clear that current NISQ-era machines are indeed noisy and difficult

to control in practice. This use case highlights many interesting areas of exploration to make

multi-qubit control possible in noisy-systems. Accurate system characterization, both of the bare

system Hamiltonian and for noise processes inherent to a specific system, are necessary for the

successful design of useful control signals. As seen in Chapter 5, even if armed with an (on average)

accurate Hamiltonian model it is possible for noise processes to severely degrade the performance

of predetermined optimal controls. It is clear that robust optimization techiniques, or optimization

under uncertainty, could be leveraged to create control signals robust to noise.
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Chapter 7

Conclusion

In this thesis, we investigated two distinct but related problems with regards to wave phe-

nomena. We will now summarize the results presented and discuss further avenues of exploration

for both topics.

In Chapter 2 we presented and analyzed the WaveHoltz iteration, a new iterative method

for solving the Helmholtz equation, for energy-conserving problems. We demonstrated that the

iteration results in positive definite and sometimes symmetric matrices that are amenable to solution

by iterative methods such as Krylov subspace methods. The numerical experiments indicated that

the WaveHoltz iteration is a promising method with more favorable scaling for problems with

outflow/impedance boundary conditions which are of much practical interest, e.g. for seismic

applications.

In Chapter 3 we extended the analysis of Chapter 2 to problems with damping and/or

impedance conditions. We additionally showed that the WaveHoltz iteration converges to the

discrete Helmholtz solution to an order matching the order of the timestepper for arbitrary order

modified equation centered timestepping schemes. We then demonstrated that knowledge of how

the timestepping modifies the discrete WaveHoltz iteration allows one to completely remove time

discretization errors.

In Chapter 4 we applied the WaveHoltz iteration to the “elastic” Helmholtz equation (also

known as the Navier equation) for energy-conserving problems with Dirichlet and/or free surface

boundary conditions. We additionally presented a second order implicit timestepping scheme with
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a modification to remove time discretization errors as was done for a family of explicit schemes

in Chapter 3. Numerical experiments indicate scaling similar to that of the acoustic Helmholtz

equation considered in Chapter 2.

The WaveHoltz method has many avenues of exploration left. For the most part we have used

unconditioned Krylov solvers to accelerate the WaveHoltz iteration, but the spectral properties of

the WaveHoltz operator, I − S, indicate that preconditioning should be possible. Given that the

spectral radius of S is smaller than one for problems that are not in resonance, it may be possible

to construct polynomial preconditioners of I − S via a Neumann series or Padé approximations

of S arising from slightly unstable WaveHoltz iterations with a small number of timesteps per

iteration. Further, we have not exploited adaptivity in space or time or any ideas from the sweeping

preconditioner class of methods.

For the elastic WaveHoltz method, we have thus far only considered energy-conserving prob-

lems with Dirichlet and/or free surface boundary conditions. It is clear that further investigation

into problems with impedance/absorbing boundary conditions is needed. For DG discretizations,

the CFL condition of explicit timesteppers may be restrictive for high order spatial discretizations

on fine meshes. Improved methods for the inversion of the matrices for implicit time-corrected

schemes could drastically improve the performance and runtime of high order DG methods for

elastic problems.

In this thesis, we presented some time-corrected centered schemes for the wave equation in

second order form. However, problems with damping or impedance/absorbing boundary conditions

require the use of the general WaveHoltz iteration in which the wave equation is solved as a first

order system in time. Another possible area of exploration is in devising modified timestepping

schemes for these systems. Related to this, we have not explored using spatial discretizations

specifically designed to reduce dispersion/pollution errors of the Helmholtz equation together with

the WaveHoltz iteration.

Beginning in Chapter 5, we shifted focus from time-domain Helmholtz solvers to the optimal

control of quantum system. In this chapter, we considered closed quantum systems governed by
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the time-dependent Schrödinger equation where the controls are microwave pulses used to enact a

user-specified quantum logic gate. We defined a pair of objective functions measuring the infidelity

of the logic gate generated by a given control and a time-average of leakage into higher energy

level states of superconducting qubits to design high-fidelity gates. To decouple the timestep size

from the size of the parameter space, we introduced a novel basis of B-spline wavelets with carrier

waves designed specifically to drive transitions between energy levels in a quantum system. Using

a “discretize-then-optimize” approach, we devised a pair of partitioned Runge Kutta schemes to

compute exact discrete gradients. We demonstated that this approach allows the construction of

high-fidelity gates using a small number of parameters for systems of superconducting qubits. We

additionally perform a brief study of risk-neutral controls to design controls that are more robust

to noise or uncertainty in the system Hamiltonian.

In Chapter 6, we briefly outlined the approach for a submitted solution to the IBM SWAP

Gate Challenge as a practical application of the methods of Chapter 5. The goal of the IBM SWAP

Gate Challenge was to ask teams of researchers to attempt to reduce the errors of a standard

SWAP gate by 50% or more on IBM’s Casablanca system. Despite simulated results (both with

IBM’s simulator and the open-source quantum control toolbox Juqbox.jl) indicating the design of

a high-fidelity gate, the experimental results did not meet the desired target set by IBM.

Despite the unsuccessful submission, Chapter 6 reveals many fruitful directions and research

questions to explore. One approach is in more thorough and advanced methods for system charac-

terization. As briefly elucidated in Chapter 5, controls that enact high-fidelity gates in a noise-free

optimization may quickly degrade in performance with the presence of unaccounted noise in the

Hamiltonian. Thus part of the system characterization procedure could benefit from characteri-

zation not only of a base Hamiltonian model, but also quantification and identification of noise

processes and their distributions. Armed with more accurate Hamiltonians, it would be advan-

tageous to to explore robust and risk-neutral/averse optimization methods to extend the ideas of

Chapter 6. This would ultimately result in controls that need to (1) be calibrated less often, and

(2) are more resistant to noise.
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.1 Proof of Lemma 2.1.1

Proof. We show the results for the rescaled transfer function

β̄(r) := β(rω) =
2

T

∫ T

0

(
cos(ωt)− 1

4

)
cos(rωt)dt =

1

π

∫ 2π

0

(
cos(t)− 1

4

)
cos(rt)dt.

By direct integration we get

β̄(r) =
1

π

∫ 2π

0

1

2
(cos((r + 1)t) + cos((r − 1)t))− 1

4
cos(rt)dt = (1)

1

2π

(
sin(2π(r + 1))

r + 1
+

sin(2π(r − 1))

r − 1
− 1

2

sin(2πr)

r

)
= sinc(r + 1) + sinc(r − 1)− 1

2
sinc(r),

(2)

where

sinc(r) =
sin(2πr)

2πr
.

We use the fact that sin(x) ≤ x− α̃x3 in the interval x ∈ [0, π] for any α̃ ∈ [0, π−2]. This leads to

the following estimate for the sinc function

0 ≤ sinc(r) ≤ 1− αr2, r ∈ [−0.5, 0.5], α ∈ [0, 4]. (3)

We also note that sinc(r + n) = sinc(r)r/(r + n) for all integer n.

We now first consider 0 ≤ r ≤ 0.5 and use (3) with α = 4 and α = 0,

|β̄(r)| = sinc(r)

∣∣∣∣ r

r + 1
+

r

r − 1
− 1

2

∣∣∣∣ =
1

2
sinc(r)

1 + 3r2

1− r2
≤ 1

2

1− 4r2 + 3r2

1− r2
=

1

2
.

For 0.5 ≤ r ≤ 1.5 we instead center around r = 1 and get for |δ| ≤ 0.5,

β̄(1 + δ) = sinc(δ)
3(δ + 1)2 + 1

2(2 + δ)(1 + δ)
≥ 0,

since sinc(δ) ≥ 0. Moreover, using again (3) with α = 1,

β̄(1 + δ) ≤ (1− δ2)
3(δ + 1)2 + 1

2(2 + δ)(1 + δ)
=

4 + 2δ − 3δ2 − 3δ3

2(2 + δ)
≤ 4 + 2δ − 2δ2 − δ3
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= 1− δ2

2
.

Finally, for r > 1 we have 1/(r + 1)− 1/2r ≥ 0 and therefore

|β̄(r)| = | sin(2πr)|
2πr
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r
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2
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≤ 3

4π

1
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We note also that for r ≥ 1.5 this gives |β̄(r)| ≤ 3/2π ≤ 1/2.

To prove (2.13) we use the Taylor expansion of β̄ around r = 1,

β̄(1 + δ) = 1 +
δ2

2
β̄′′(1) +

δ3

6
R̄(δ),

where R̄(δ) is the remainder term, which can be bounded as

|R̄(δ)| ≤ sup
r≥0

∣∣∣β̄(3)(r)
∣∣∣ ≤ 1

π

∫ 2π

0
t3
(

1 +
1

4

)
dt = 5π3.

Hence, |R(δ)| ≤ |R̄(δ)|/6 ≤ 5π3/6. Finally,

β′′(1) = sinc′′(2) + sinc′′(0)− 1

2
sinc′′(1) =

−1

2
− (2π)2

3
+ 1 = −2b1.

This shows (2.13) and concludes the proof of the lemma.

.2 Verification of Discrete Solution

Here we verify that (2.19) is indeed a solution to the difference equation (2.18). Direct

substitution yields

ŵn+1
j − 2ŵnj + ŵn−1

j + ∆t2λ2
j ŵ

n
j = (v̂j − v̂∞j ) cos(λ̃jtn)

(
cos(λ̃j∆t)− 2 + ∆t2λ2

j + cos(λ̃j∆t)
)

+ v̂∞j cos(ωtn)
(
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)
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j )
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j

)
= v̂∞j cos(ωtn)

(
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j

)
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Second, the initial conditions are satisfied since

ŵ0
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2
∆t2v̂∞j

(
λ2
j − ω̃2

)
= v̂j

(
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2
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− 1

2
∆t2f̂j .

This shows that (2.19) solves (2.18).



199

.3 Proof of Lemma 2.1.5

Proof. In general, we introduce the trapezoidal rule applied to cos(αt) in [0, 1],

Th(α) := h
M∑
n=0

ηn cos(αtn) ≈
∫ 1

0
cos(αt)dt =

sin(α)

α
, h = 1/M,

from which we attain the following lemma:

Lemma .3.1. The error in Th(α) satisfies1

∣∣∣∣∫ 1

0
cos(αt)dt− Th(α)

∣∣∣∣ ≤ h2|α|
π2

, when |hα| ≤ π.

Proof. A direct calculation shows that

Th(α) = g(hα)

∫ 1

0
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x

2 tan(x/2)
.

The function g(x) can be bounded as 1− x2/π2 ≤ g(x)≤ 1 for |x| ≤ π. This gives∣∣∣∣∫ 1
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2
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)
,

and h = ∆t/T , we can write
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2
Th(Tλ)

]
.

From Lemma .3.1 we then get that

|β(λ̃j)− βh(λ̃j)| ≤
h2

π2

(
|T (ω + λ̃j)|+ |T (ω − λ̃j)|+

1

2
|T λ̃j |

)
≤ 5h2T

2π2
(ω + λ̃j) =

5∆t2

2π2T
(ω + λ̃j),

1 Note that this estimate is sharper than the standard error estimate for the trapezoidal rule, which would have
the factor α2 from the second derivative of the integrand, not just α.
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when

π ≥ hT (ω + λ̃j) = ∆t(ω + λ̃j),

which is true by (3.25) and the fact that arcsin(x) ≤ πx/2 for x ∈ [0, 1]:

λ̃j =
2

∆t
arcsin

(
∆tλj

2

)
≤ π

2
λj . (4)

Next, we use the inequality |x− sin(x)| ≤ x3/6 for |x| ≤ π/2 to show that∣∣∣∣sin(xh)

h
− x
∣∣∣∣ =

1

h
|sin(xh)− xh| ≤ (xh)3

6h
=
h2x3

6
, |hx| ≤ π

2
. (5)

It gives us an estimate for λ̃j − λj ,

|λj − λ̃j | =

∣∣∣∣∣∣
sin
(

∆tλ̃j/2
)

∆t/2
− λ̃j

∣∣∣∣∣∣ ≤ ∆t2

24
λ̃3
j ,

which is valid for all j since ∆tλ̃j/2 ≤ ∆tπλj/4 ≤ ∆tπλN/4 ≤ π/2, by (3.25) and (4).

By Lemma 2.1.1

|β(ω + r)| ≤


1− r2

2ω2 , |r/ω| ≤ 1
2 ,

1
2 , |r/ω| ≥ 1

2 .

We now claim that the statement (2.20) in the lemma holds for all j if ∆tω ≤ min(δh, 1). On the

one hand, if |ω − λ̃j | ≥ ω/2, by (3.25) and (4)

|βh(λ̃j)| ≤ |β(λ̃j)|+
5∆t2

2π2T
(ω+ λ̃j) ≤

1

2
+

5∆t2

2π2T
(ω+ λ̃j)=

1

2
+

5∆tω

4π3
∆t(ω+ λ̃j) ≤

1

2
+

5∆tω

4π2
≤ 0.63.

On the other hand, if |ω − λ̃j | < ω/2,

|ω − λ̃j |
ω

≥ |ω − λj |
ω

−|λ̃j − λj |
ω

≥ δh−
∆t2

24ω
λ̃3
j ≥ δh−

∆t2

24ω
(ω+|λ̃j−ω|)3 ≥ δh−

(3/2)3

24
∆t2ω2 ≥ 55

64
δh,

since min(δh, 1)2 ≤ δh. Then

|βh(λ̃j)| ≤ |β(λ̃j)|+
5∆t2

48T
(ω + λ̃j) ≤ 1− 1

2

(
|ω − λ̃j |

ω

)2

+
5∆t2ω

96π
(ω + ω + ω/2)

≤ 1− 552

2 · 642
δ2
h + ∆t2ω2 25

192π
≤ 1−

(
552

2 · 642
− 25

192π

)
δ2
h ≤ 1− 0.3δ2

h.

This proves the lemma.



201

.4 Proof of Lemma 3.1.1

We show the results for the rescaled function

γ̄(r) := γ(rω) =
2

T

∫ T

0

(
cos(ωt)− 1

4

)
sin(rωt) dt =

1

π

∫ 2π

0

(
cos(t)− 1

4

)
sin(rt) dt.

By direct integration we get

γ̄(r) =
1

π

∫ 2π

0

1

2
(sin((r + 1)t) + sin((r − 1)t))− 1

4
sin(rt) dt =

(1 + 3r2) sin2(πr)

2πr(r2 − 1)

=
πr(1 + 3r2)sinc2(r/2)

2(r2 − 1)
,

where

sinc(r) =
sin(2πr)

2πr
.

From [14] we have the following expression for β:

β̄(r) =
1

π

∫ 2π

0

1

2
(cos((r + 1)t) + cos((r − 1)t))− 1

4
cos(rt) dt =

(1 + 3r2) sin(2πr)

4πr(r2 − 1)

=
(1 + 3r2)sinc(r)

2(r2 − 1)
.

Then the eigenvalues of the WaveHoltz operator applied to the first order system are

|µ̄(r)|2 = β̄2(r) + γ̄2(r) =
(1 + 3r2)2 sin2(πr)

4π2r2(r2 − 1)2
=

(1 + 3r2)2sinc2(r/2)

4(r2 − 1)2
.

We now first consider 0 ≤ r ≤ 0.5 and note that |µ(r)|2 is a positive, increasing function on this

interval so that

|µ̄(r)|2 ≤ |µ̄(1/2)| = 49

9π2
≤ 0.56.

For 1/2 ≤ r ≤ 3/2 we instead center around r = 1 and get for |δ| ≤ 1/2,

|µ̄(1 + δ)|2 =
(3(δ + 1)2 + 1)2 sin2(πδ)

4π2δ2(1 + δ)2(2 + δ)2
=

(3(δ + 1)2 + 1)2sinc2(δ/2)

4(1 + δ)2(2 + δ)2
.

We use the fact that sin(x) ≤ x− α̃x3 in the interval x ∈ [0, π] for any α̃ ∈ [0, π−2]. This leads to

the following estimate for the sinc function

0 ≤ sinc(r/2) ≤ 1− αr2, r ∈ [−0.5, 0.5], α ∈ [0, 1]. (6)
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Using (6) with α = 1, gives

|µ̄(1 + δ)|2 ≤ (3(δ + 1)2 + 1)2(1− δ2)2

4(1 + δ)2(2 + δ)2
=

(4 + 2δ − 3δ2 − 3δ3)2

4(2 + δ)2
≤ (4 + 2δ − 2δ2 − δ3)2

4(2 + δ)2

=

(
1− δ2

2

)2

= 1− δ2 +
δ4

4

≤ 1− 15

16
δ2,

since |δ| < 1/2. A Taylor expansion around δ = 0 for |δ| ≤ 1/2 immediately gives the bound

√
1− δ2 ≤ 1− δ2

2
=⇒ |µ(1 + δ)| ≤

√
1− 15

16
δ2 ≤ 1− 15δ2

32
.

If we consider r ≥ 3/2,

|µ̄(r)|2 =
(1 + 3r2)2sinc2(r/2)

4(r2 − 1)2
≤ (1 + 3r2)2

4(r2 − 1)2
,

which is a positive and decreasing function. It follows that

|µ̄(r)|2 ≤ (1 + 3(3/2)2)2

4((3/2)2 − 1)2
≤ 0.44,

for r ≥ 3/2. Finally, for a more general bound for r > 1 we have 1/(r + 1)− 1/2r ≥ 0 so that

|µ̄(r)|2 =
(1 + 3r2)2 sin2(πr)

4π2r2(r2 − 1)2
≤ (1 + 3r2)2

4π2r2(r2 − 1)2
=

1

π2

(
1

r + 1
+

1

r − 1
− 1

2r

)2

≤
(

3

2π(r − 1)

)2

,

which gives

|µ̄(r)| ≤ 3

2π(r − 1)
.

To prove (3.12), we use a Taylor expansion of µ̄(r) about r = 1 in the interval r ∈ (1/2, 3/2),

|µ̄(1 + δ)| = 1 +
δ2

2

d2

dr2
[|µ̄(r)|]r=1 +

δ3

6
R̄(δ),

where R̄(δ) is the remainder term. We note that by product rule we have

d

dr
|µ̄(r)| = 1

|µ̄|
(β̄β̄′ + γ̄γ̄′).
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Since

d

dr
|µ̄(r)|−s = −s|µ̄(r)|−s−1 d

dr
|µ̄(r)| = −s

|µ̄(r)|s+2
(β̄β̄′ + γ̄γ̄′),

by repeated product rule we can then show that

d3

dr3
|µ̄(r)| = 3

|µ̄|5
(β̄β̄′ + γ̄γ̄′)2 − 1

|µ̄|3
(β̄β̄′′ + (β̄′)2 + γ̄γ̄′′ + (γ̄′)2)(1 + β̄β̄′ + γ̄γ̄′)

+
1

|µ̄|
(β̄β̄′′′ + 3β̄′β̄′′ + γ̄γ̄′′′ + 3γ̄′γ̄′′).

We note that |µ̄(r)| ≥ |µ̄(3/2)| ≥ 1/π in the interval 1/2 ≤ r ≤ 3/2, and that we have the following

bound

sup
r≥0

∣∣∣β̄(s)(r)
∣∣∣ ≤ 1

π

∫ 2π

0
ts
(

1 +
1

4

)
dt = 5

2s−1 πs

s+ 1
,

which similarly holds for supr≥0

∣∣γ̄(s)(r)
∣∣ for s = 0, 1, 2, . . . . Thus by Taylor’s theorem we have

|R̄(δ)| ≤ sup
1/2≤r≤3/2

∣∣∣∣ d3

dr3
|µ̄(r)|

∣∣∣∣ ≤ 3

|µ̄(3/2)|5
252π2

4
+

3

|µ̄(3/2)|3

(
50π2

3
+

25π2

2

)(
1 +

25π

2

)
+

3 · 75π3

|µ̄(3/2)|

≤ 3

4
252π7 + 3π3

(
50π2

3
+

25π2

2

)(
1 +

25π

2

)
+ 3 · 75π4

=
25π4

4

(
36 + 20π + 250π2 + 75π3

)
.

Then, |R(δ)| ≤ |R̄(δ)|/6. Finally,

d2

dr2
[|µ̄(r)|]r=1 =

1

6
(3− 2π2) = −2b1.

.5 Wave Equation Extension

Let Ω = (−∞, 0) and let f ∈ L2(Ω) be compactly supported in Ω away from x = 0. Addi-

tionally, assume 1/c2 ∈ L1
loc(Ω) with c(0) = c0 on the interval [−δ, 0] for some δ > 0. We consider
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the semi-infinite problem

wtt =
∂

∂x

[
c2(x)

∂

∂x
w

]
− Re{f(x)eiωt}, x ≤ 0, 0 ≤ t ≤ T,

w(0, x) = v0(x), wt(0, x) = v1(x),

αwt(t, 0) + βc0wx(t, 0) = 0,

Let w̃ solve the extended wave equation

w̃tt =
∂

∂x

[
c̃2(x)

∂

∂x
w̃

]
− Re{f̃(x)eiωt}, x ∈ R, 0 ≤ t ≤ T,

w̃(0, x) = ṽ0(x), w̃t(0, x) = ṽ1(x),

αw̃t(t, 0) + βc0w̃x(t, 0) = 0.

where f̃ is a zero extension, c̃ is the extended wavespeed

c̃(x) =


c0, −δ < x ≤ 0,

c̃0, x > 0,

and (I) ṽ0 ∈ H1 and ṽ1 ∈ L2. We then choose the extension of v0 and v1 such that

ṽ1(x) + ṽ′0(x) = 0, x > 0, (II)

which will have purely right-going waves in the extended region x > 0. Moreover, since c is constant

in [−δ, 0] the solution will then be of the form

w̃(t, x) =


wL(x+ c0t) + wR(x− c0t), −δ ≤ x ≤ 0,

wT (x− c̃0t), x > 0,

for some functions wL, wR, and wT . At x = 0 where c̃ is (potentially) discontinuous, the weak

solution satisfies the interface conditions that w̃ and c̃2w̃x are both continuous. These requirements

lead to the relations

wL(c0t) + wR(−c0t) = wT (−c̃0t),

c2
0(w′L(c0t) + w′R(−c0t)) = c̃2

0w
′
T (−c0t).
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It follows that

w̃t(t, 0
−) = c0(w′L(c0t)− wR(−c0t)) = −c̃0w

′
T (−c̃0t), c0w̃x(t, 0−) =

c̃2
0

c0
w′T (−c0t),

so that the impedance condition

αw̃t(t, 0
−) + βc0w̃x(t, 0−) =

(
−αc̃0 + β

c̃2
0

c0

)
w′T (−c0t) = 0,

is satisfied if

c̃0 =
α

β
c0. (III)

With this choice of the extended wavespeed c̃0, both w̃ and w satisfy the same PDE and condition

at x = 0 so that they must be equal for x < 0. In summary, if we have that conditions (I-III)

are satisfied, we have that w̃(t, x) = w(t, x) for x < 0. We note that a similar argument can be

made for an interior impedance problem on a bounded domain, a ≤ x ≤ b, to a problem on R. In

this case, assuming c(a) = ca, c(b) = cb where c is constant near the endpoints, then the following

problem has w̃(t, x) = w(t, x) for a ≤ x ≤ b:

w̃tt =
∂

∂x

[
c̃2(x)

∂

∂x
w̃

]
− Re{f̃(x)e−iωt}, x ∈ R, 0 ≤ t ≤ T,

w̃(0, x) = ṽ0(x), w̃t(0, x) = ṽ1(x),

where ṽ0 and c̃ are the constant extensions (with γ = α/β)

ṽ0(x) =



v0(a0), x < a,

v0(x), a ≤ x ≤ b,

v0(b0), b < x,

c̃(x) =



γca, x < a,

c(x), a ≤ x ≤ b,

γcb, b < x,

and ṽ1, f̃ are zero extensions of v1 and f , respectively.

Since the solutions to the wave equation have finite speed of propagation, we may replace the

domain R for w̃ by a large enough domain with any boundary condition given that any reflections

at the new boundary do not re-enter the region a ≤ x ≤ b. Let ã < a−caT/2 and b̃ > b+cbT/2. We
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define the extension operator E such that [v0, v1]T → [ṽ0, ṽ1]T where ṽ0 and c̃ are the extensions as

above and ṽ1, f̃ are zero extensions of v1 and f , respectively. We now consider the (finite interval)

extended problem with homogeneous Neumann conditions

w̃tt =
∂

∂x

[
c̃2(x)

∂

∂x
w̃

]
− Re{f̃(x)e−iωt}, ã ≤ x ≤ b̃, 0 ≤ t ≤ T,

w̃(0, x) = ṽ0(x), w̃t(0, x) = ṽ1(x),

w̃x(t, ã) = 0, w̃x(t, b̃) = 0.

Defining the projection operator P as the restriction of w̃ to a ≤ x ≤ b then it follows that Pw̃ = w

where w is the original wave solution to the interior impedance problem.

.6 Verification of Discrete Solution

Here we verify that (3.28) is a solution to the difference equation (3.26). Direct substitution

yields

ŵn+1
j − 2ŵnj + ŵn−1

j +2

[
m∑
k=1

(−1)k+1∆t2kλ2k
j

(2k)!

]
ŵnj =

(v̂j − v̂∞j ) cos(λ̃jtn)

(
cos(λ̃j∆t)− 2 + 2

m∑
k=1

(−1)k+1∆t2kλ2k
j

(2k)!
+ cos(λ̃j∆t)

)

+ v̂∞j cos(ωtn)

(
cos(ω∆t)− 2 + 2

m∑
k=1

(−1)k+1∆t2kλ2k
j

(2k)!
+ cos(ω∆t)

)

= (v̂j − v̂∞j ) cos(λ̃jtn)

(
−4 sin2(λ̃j∆t/2) + 2

m∑
k=1

(−1)k+1∆t2kλ2k
j

(2k)!

)

+ v̂∞j cos(ωtn)

(
−4 sin2(ω∆t/2) + 2

m∑
k=1

(−1)k+1∆t2kλ2k
j

(2k)!

)

= v̂∞j cos(ωtn)

(
−4 sin2(ω∆t/2) + 2

m∑
k=1

(−1)k+1∆t2kλ2k
j

(2k)!

)
.

Finally, if

sin2(ω∆t/2) =
m∑
k=1

(−1)k+1 (∆tω̃)2k

2(2k)!
,
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then

ŵn+1
j − 2ŵnj + ŵn−1

j +2

[
m∑
k=1

(−1)k+1∆t2kλ2k
j

(2k)!

]
ŵnj

= v̂∞j cos(ωtn)

(
−4 sin2(ω∆t/2) + 2

m∑
k=1

(−1)k+1∆t2kλ2k
j

(2k)!

)

= v̂∞j cos(ωtn)

2

m∑
k=1

(−1)k∆t2k
(
ω̃2k − λ2k

j

)
(2k)!


= v̂∞j cos(ωtn)

(
2

m∑
k=1

(−1)k∆t2k

(2k)!
(ω̃2 − λ2

j )
k−1∑
`=0

ω̃2(k−`−1)λ2`

)

= f̂j cos(ωtn)

(
2

m∑
k=1

(−1)k∆t2k

(2k)!

k−1∑
`=0

ω̃2(k−`−1)λ2`

)
,

since

ω̃2k − λ2k =
(
ω̃2 − λ2

) k−1∑
`=0

ω̃2(k−`−1)λ2`, k = 1, 2, . . . ,

as desired. Moreover, the initial conditions are satisfied as

ŵ0
j = (v̂j − v̂∞j ) + v̂∞j = v̂j ,

ŵ−1
j = (v̂j − v̂∞j ) cos(λ̃j∆t) + v̂∞j cos(ω∆t)

= (v̂j − v̂∞j )

(
1−

m∑
k=1

(−1)k+1 (∆tλj)
2k

2k!

)
+ v̂∞j

(
1−

m∑
k=1

(−1)k+1 (∆tω̃)2k

2k!

)

= v̂j

(
1−

m∑
k=1

(−1)k+1 (∆tλj)
2k

2k!

)
− v̂∞j

(
m∑
k=1

(−1)k+1∆t2k
(
ω̃2k − λ2k

)
2k!

)

= v̂j

(
1 +

m∑
k=1

(−1)k (∆tλj)
2k

2k!

)
+ f̂j

(
m∑
k=1

(−1)k∆t2k

2k!

k−1∑
`=0

ω̃2(k−`−1)λ2`

)
.

This shows that (3.28) solves (3.26).

.7 Well-definedness of modified frequencies

For an order 2m ME scheme we have the relation

sin2(ω∆t/2) =
m∑
j=1

(−1)j+1 (∆tω̃)2j

2(2j)!
= sin2(ω̃∆t/2) +O(∆t2m+2), (7)
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for which we note that, under the assumptions of Theorem 3.3.1, ∆t, ω > 0 so that ∆tω̃ = 0 does

not satisfy the above relation. We seek to show that if ∆tω ≤ 1 then we have a well-defined (and

unique) real-valued ω̃ such that 0 ≤ ∆tω̃ ≤ 2. To that end, we now define the polynomial

p(x) =

m∑
j=1

(−1)j+1xj

2(2j)!
− sin2(ω∆t/2), (8)

and note that (∆tω̃)2 is a root of p(x). On the interval [0, 1/2] we have that sin2(x) is increasing

so that

0 ≤ sin2(ω∆t/2) ≤ sin2(1/2) ≤ 0.23 < 1,

immediately giving p(0) < 0. Moreover,

p(4) = −1

2

m∑
j=1

(−1)j22j

(2j)!
− sin2(ω∆t/2) = −1

2

∞∑
j=1

(−1)j22j

(2j)!
+

1

2

∞∑
j=m+1

(−1)j22j

(2j)!
− sin2(ω∆t/2)

= −1

2
(cos(2)− 1) +

1

2

∞∑
j=m+1

(−1)j22j

(2j)!
− sin2(ω∆t/2)

= sin2(1) +
1

2

∞∑
j=m+1

(−1)j22j

(2j)!
− sin2(ω∆t/2).

We note that

∞∑
j=2

22j

(2j)!
=
∞∑
j=0

22j

(2j)!
− 3 = cosh(2)− 3,

so that

1

2

∞∑
j=m+1

(−1)j22j

(2j)!
> −1

2

∞∑
j=m+1

22j

(2j)!
≥ −1

2

∞∑
j=2

22j

(2j)!
= −1

2
(cosh(2)− 3).

This gives that

p(4) = sin2(1) +
1

2

∞∑
j=m+1

(−1)j22j

(2j)!
− sin2(ω∆t/2) ≥ sin2(1)− 1

2
(cosh(2)− 3)− sin2(ω∆t/2)

≥ sin2(1)− 1

2
(cosh(2)− 3)− sin2(1) > 0.

By the intermediate value theorem, it follows that p(x) has a root in the interval [0, 4]. We next

need to show that p′(x) 6= 0 on this interval to guarantee the root is unique. Taking a derivative,

d

dx
p(x) =

m∑
j=1

(−1)j+1jxj−1

(2j)!
=

1

2

1 +

m∑
j=2

(−1)j+1xj−1

(2j − 1)!

 .
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We then have

m∑
j=2

(−1)j+1xj−1

(2j − 1)!
≥ −

m∑
j=2

2j−1

(2j − 1)!
= − 1√

2

m∑
j=2

√
2

2j−1

(2j − 1)!
≥ − 1√

2

 ∞∑
j=1

√
2

2j−1

(2j − 1)!
−
√

2


= −sinh(

√
2)√

2
+ 1,

so that

d

dx
p(x) =

1

2

1 +
m∑
j=2

(−1)j+1xj−1

(2j − 1)!

 ≥ 1

2
− sinh(

√
2)√

2
+ 1 >

1

10
> 0. (9)

This gives that there is a unique, real-valued ω̃ with ∆tω̃ ≤ 2 that satisfies the relation (7), which

we choose as our modified frequency.

We now verify that the relation (3.29) is well-defined, by showing that∣∣∣∣∣
m∑
k=1

(−1)k+1 (∆tλj)
2k

2(2k)!

∣∣∣∣∣ ≤ 1, (10)

if we have ∆tλj ≤ 2 for each j under the assumptions of Theorem 3.3.1. We define ak =

(∆tλj)
2k/2(2k)!, and note that ak+1/ak < 1 so that ak > ak+1 > 0 and that a1 = (∆tλj)

2/4 ≤ 1.

Letting

m̃ =


m, m odd,

m+ 1, m even,

then we have

m∑
k=1

(−1)k+1 (∆tλj)
2k

2(2k)!
=

m∑
k=1

(−1)k+1ak ≤
m̃∑
k=1

(−1)k+1ak = a1 −
(m̃−1)/2∑
k=1

(a2k − a2k+1) ≤ a1 ≤ 1,

If instead

m̃ =


m+ 1, m odd,

m, m even,

then we have the bound

m∑
k=1

(−1)k+1 (∆tλj)
2k

2(2k)!
=

m∑
k=1

(−1)k+1ak ≥
m̃∑
k=1

(−1)k+1ak =

m̃/2∑
k=1

(a2k−1 − a2k) > 0,

proving (10).
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.8 Error in discrete Helmholtz frequency

We let x = ∆tω, x̃ = ∆tω̃, and Rm = p(x2) − p(x̃2) where p(x) is defined as in (8). By the

mean value theorem we have

|Rm| = |p(x2)− p(x̃2)| = |(x2 − x̃2)p′(ξ)| = |x− x̃||x+ x̃||p′(ξ)|,

for some ξ ∈ [0, 2], so that

|x− x̃| ≤ |Rm|
|x+ x̃||p′(ξ)|

.

Since x̃2 is a root of p, a Taylor series estimate gives

|Rm| = |p(x2)− p(x̃2)| = |p(x2)| =

∣∣∣∣∣∣
m∑
j=1

(−1)j+1xj

2(2j)!
− sin2(ω∆t/2)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∞∑

j=m+1

(−1)j+2 (∆tω)2j

2(2j)!

∣∣∣∣∣∣
≤ (∆tω)2m+2

2(2m+ 2)!
,

which gives

|x− x̃| ≤ |Rm|
|x+ x̃||p′(ξ)|

≤ ∆t2m+1ω2m+2

2(2m+ 2)!(ω + ω̃)|p′(ξ)|
=⇒ |ω − ω̃| ≤ ∆t2mω2m+2

2(2m+ 2)!(ω + ω̃)|p′(ξ)|
.

By (9) we have that |p′(x)| > 1/10 in [0, 4], which finally gives

|ω − ω̃| ≤ 10∆t2mω2m+2

2(2m+ 2)!(ω + ω̃)
≤ 5∆t2mω2m+1

(2m+ 2)!(1 + ω̃/ω)
≤ 5∆t2mω2m+1

(2m+ 2)!
≈ O(∆t2m). (11)
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.9 Verification of Discrete Solution

Here we verify that (4.28) is a solution to the difference equation (4.27). Direct substitution

yields(
1 +

∆t2

2
λ2
j

)
ûn+1
j −αûnj +

(
1 +

∆t2

2
λ2
j

)
ûn−1
j =

(û0,j − v̂j) cos(λ̃jtn)

((
1 +

∆t2

2
λ2
j

)
cos(λ̃j∆t)− α

+

(
1 +

∆t2

2
λ2
j

)
cos(λ̃j∆t)

)
+ v̂j cos(ωtn)

((
1 +

∆t2

2
λ2
j

)
cos(ω∆t)− α+

(
1 +

∆t2

2
λ2
j

)
cos(ω∆t)

)
= (û0,j − v̂j) cos(λ̃jtn)

(α
2
− α+

α

2

)
+ v̂j cos(ωtn) cos(ω∆t)

((
1 +

∆t2

2
λ2
j

)
−
(
2 + ∆t2ω2

)
+

(
1 +

∆t2

2
λ2
j

))
= v̂j cos(ωtn) cos(ω∆t)∆t2

(
λ2
j − ω2

)
= −∆t2f̂j cos(ωtn) cos(ω∆t),

as desired. Moreover, we can check that the initial condition is satisfied since

û0
j = (û0,j − v̂j) + v̂j = û0,j ,

and

û−1
j = (û0,j − v̂j) cos(λ̃j∆t) + v̂j cos(ω∆t) = û0,j cos(λ̃j∆t) + v̂j

(
cos(ω∆t)− cos(λ̃j∆t)

)
= û0,j cos(λ̃j∆t)

+ v̂j cos(ω∆t)

(
1−

(
1 +

ω2∆t2

2

)(
1 +

∆t2

2
λ2
j

)−1
)

= û0,j cos(λ̃j∆t)

+ v̂j cos(ω∆t)

(
1 +

∆t2

2
λ2
j

)−1
∆t2

2

(
λ2
j − ω2

)
=

(
1 +

∆t2

2
λ2
j

)−1(
α

2
û0,j −

∆t2

2
f̂j cos(ω∆t)

)
.

This shows that (4.28) is indeed a solution to the implicit scheme (4.23).
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.10 Time-step Restriction

To understand how restrictive the requirement (4.24) is, we plot α for various values of ω∆t

below in Figure 1.

0 0.5 1 1.5 2

t

-3

-2

-1

0

1

2

3

 =
 c

o
s
(

t)
 (

2
+

2
t2

)

r

Figure 1: Values of α = cos(ω∆t)(2 + ω2∆t2) for values of ω∆t in the interval [0, 2]. The red lines

indicate the desired bound on α, and the black line indicates the maximum allowable value of ω∆t

at r ≈ 1.93.

From Figure 1 we see that |α| < 2 for ∆t < r/ω where r ≈ 1.93. This choice of the time-step

corresponds to a requirement of at least four time-steps per iteration. However, the WaveHoltz

kernel is a constant with four time-steps so that at least five time-steps are needed for stability.

.11 Motivation of Conjecture 1

For the stability requirement (4.26), which requires at least five time-steps per iteration, we

note that from (4.29) we have that the right hand side is a decreasing function of λ so that

cos(λ̃j∆t) ≤ lim
λj→∞

cos(ω∆t)

(
1 +

ω2∆t2

2

)(
1 +

∆t2

2
λ2
j

)−1

= 0,

implying that

0 ≤ λ̃j ≤
π

2∆t
=
k

4
ω,
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where k ≥ 5 is the number of quadrature points used in the trapezoidal rule. We now consider the

(continous) rescaled filter transfer function,

β̄(r) := β(rω) =
2

T

∫ T

0

(
cos(ωt)− 1

4

)
cos(rωt)dt =

1

π

∫ 2π

0

(
cos(t)− 1

4

)
cos(rt)dt,

with discrete analogue

β̄h(r) =
∆t

π

M∑
n=0

ηn cos(rtn)

(
cos(tn)− 1

4

)
, ηn =


1
2 , n = 0 or n = M,

1, 0 < n < M.

Let us now take a look at the rescaled discrete filter function, β̄h(r). It is sufficient to consider

only the range r ∈ [0, k/4], which we plot in Figure 2.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

r

-0.6

-0.4

-0.2
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1

0.95 0.96 0.97 0.98 0.99 1 1.01

r

0.994

0.995

0.996

0.997

0.998

0.999

1

1.001

1.002

Figure 2: A plot of the discrete filter function using five time-steps 0 ≤ r ≤ 5/4. On the left we

plot the full range of values of r, and on the right we zoom in close to resonance, i.e. r = 1.

From Figure 2 we see that it is possible to integrate and get eigenvalues of the WHI operator

to be larger than one for a small range near resonance, r = 1. To get a sense of the size of this

gap, we perform a simple bisection where we find the leftmost point r∗ < 1 such that βh(r∗) = 1

for increasing number of quadrature points k = 5, 6, . . . , 100. We plot the result below in Figure 3.
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Figure 3: A bound on the gap from resonance that creates problematic modes. The blue curve is

the true gap, 1− r∗, and the dotted red curve is a proposed bound.

From Figure 3 we see that, perhaps unsurprisingly, the gap shrinks with increasing number

of quadrature points. The curve in red in Figure 3 indicates the bound

1− r∗ ≤ 0.022 ·∆t2,

so that we see that this gap shrinks as ∆t2. Moreover, if |1− r| ≥ 0.022 ·∆t2 then |βh(r)| < 1. For

r = λ̃j/ω, we may thus obtain convergence of the iteration if it can be guaranteed the time-step is

chosen such that λ̃j 6∈ [ω(1− 0.022 ·∆t2), ω].

Assuming we have a bound similar to the above, let us now try to get a minimum on the

distance |λ̃j − ω|. By the mean-value theorem we have the bound | cos(x) − cos(y)| ≤ |x − y|, so

that

| cos(λ̃j∆t)− cos(ω∆t)|
∆t

≤ |λ̃j − ω|.
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Some algebra shows that

cos(ω∆t)− cos(λ̃j∆t) = cos(ω∆t)− cos(ω∆t)

(
1 +

ω2∆t2

2

)(
1 +

∆t2

2
λ2
j

)−1

= cos(ω∆t)
∆t2

2

(
λ2
j − ω2

)(
1 +

∆t2

2
λ2
j

)−1

= cos(ω∆t)
∆t2

2
(λj − ω) (λj + ω)

(
1 +

∆t2

2
λ2
j

)−1

= cos(ω∆t)
∆t2

2
ωδh (λj + ω)

(
1 +

∆t2

2
λ2
j

)−1

,

where δh = minj |λj − ω|/ω > 0 is the minimum gap to resonance. We then have

|λ̃j − ω| = cos(ω∆t)
∆t

2
ωδh (λj + ω)

(
1 +

∆t2

2
λ2
j

)−1

≥ cos(ω∆t)
∆t

2
ωδh (λ1 + ω)

(
1 +

∆t2

2
λ2
N

)−1

≥ cos(2π/5)
∆t

2
ωδh (λ1 + ω)

(
1 +

∆t2

2
λ2
N

)−1

≥ cos(2π/5)
∆t

2
ωδh (λ1 + ω)

(
1 + 2

(
πλN

5

)2
)−1

,

so that we need to choose ∆t such that

cos(ω∆t)
∆t

2
ωδh (λ1 + ω)

(
1 +

∆t2

2
λ2
N

)−1

≥ 0.022 ·∆t2,

which gives the condition

∆t ≤ cos(2π/5)ω2δh
0.044 · (1 + 2(πλN/5)2)

≤ cos(2π/5)ωδh (λ1 + ω)

0.044 · (1 + 2(πλN/5)2)
≈ 7.02 · δhω (λ1 + ω)

1 + 2(πλN/5)2
.

.12 Composite quantum systems and essential states

To simplify the notation we assume a bipartite quantum system (Q = 2); the case Q = 1 is

trivial and Q > 2 follows by straightforward generalizations. Let the number of energy levels in the

subsystems be n1 and n2, respectively, for a total of N = n1 · n2 states in the coupled system. We

use the canonical unit vectors e
(nq)
j ∈ Rnq , for j = 0, . . . , nq − 1, as a basis for subsystem q, where
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the superscript indicates its size. These basis vectors can be used to describe the total state of the

coupled system,

ψ =

n2−1∑
j2=0

n1−1∑
j1=0

ψj2,j1

(
e

(n2)
j2
⊗ e(n1)

j1

)
=

N−1∑
k=0

~ψke
(N)
k . (12)

Here, ~ψ ∈ CN denotes the one-dimensional representation of the two-dimensional state vector ψ,

using a natural ordering of the elements, i.e., ~ψk = ψj2,j1 for k = j1 + n1j2 =: kind(j2, j1). The

mapping k = kind(j2, j1) is invertible for k ∈ [0, N − 1].

We classify the energy levels in the total state vector as either essential or guarded levels. The

unitary gate transformation is only specified for the essential levels. The guard levels are retained

to justify the truncation of the modal expansion of Schrödinger’s equation, and to avoid leakage of

probability to even higher energy levels.

Let the number of essential energy levels in the subsystems be m1 and m2, respectively, where

0 < mq ≤ nq. Similar to the total state vector, we use the canonical unit vectors as a basis for the

essential subspace of each subsystem. The total number of essential levels equals E = m1 ·m2. Let

the essential energy levels in the total state vector be represented by the essential state vector φ.

Similar to the full state vector, we flatten its two-dimensional indexing using a natural ordering,

φ =

m2−1∑
i2=0

m1−1∑
i1=0

φi2,i1

(
e

(m2)
i2
⊗ e(m1)

i1

)
=

E−1∑
`=0

~φ`e
(E)
` ∈ CE , (13)

where ` = i1 +m1i2 =: `ind(i2, i1). The elements in the essential state vector are defined from the

total state vector by φi2,i1 = ψi2,i1 , for i1 ∈ [0,m1 − 1] and i2 ∈ [0,m2 − 1].

The initial condition for the solution operator matrix U(t) in Schrödinger’s equation (5.3)

needs to span a basis for the E-dimensional essential state space. Here we use the canonical

basis consisting of the unit vectors e
(E)
` . Let the columns of the initial condition matrix be U0 =

[g0, g1, . . . , gE−1] ∈ RN×E . Because the total probabilities in each column vector gk must sum to

one, the basis vectors in the total state space become

g` = U0e
(E)
` , gk,` =


1, k = kind(i2(`), i1(`)),

0, otherwise,

for ` = 0, 1, . . . , E − 1. (14)
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Here, i2(`) = b`/m1c and i1(`) = `−m1 · i2(`).

The target gate matrix VE ∈ CE×E defines the unitary transformation between the essential

levels in the initial and final states, φT = VEφ0, for all φ0 ∈ CE . Because VE is unitary, each of

its columns has norm one. To preserve total probabilities, we define the target gate transformation

according to

Vtg = U0VE ∈ CN×E . (15)

This implies that each column of Vtg also has norm one.

Example: A bipartite quantum system As a small example, consider a composite

system considering of two subsystems, each with three energy levels, n1 = n2 = 3. In this case, the

dimension of the full state vector is N = 9. It can be written as:

ψ =

n2−1∑
j2=0

n1−1∑
j1=0

ψj2,j1

(
e

(3)
j2
⊗ e(3)

j1

)
=



ψ0,0

ψ0,1

ψ0,2

ψ1,0

ψ1,1

ψ1,2

ψ2,0

ψ2,1

ψ2,2



, ψ =
8∑

k=0

~ψke
(9)
k =



~ψ0

~ψ1

~ψ2

~ψ3

~ψ4

~ψ5

~ψ6

~ψ7

~ψ8



. (16)

If both systems have two essential levels, i.e. m1 = m2 = 2, there are E = 4 essential levels in the

composite system. In this case the total and essential state vectors are related by

~φ =



ψ0,0

ψ0,1

ψ1,0

ψ1,1


= U †0

~ψ, U †0 =



1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0


∈ R4×9. (17)
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.13 The Hamiltonian in a rotating frame of reference

The time-dependent and unitary change of variables ψ̃(t) = R(t)ψ(t) where R†R = I, results

in the transformed Schrödinger equation

dψ̃

dt
= −iH̃(t)ψ̃, H̃(t) = R(t)H(t)R†(t) + iṘ(t)R†(t). (18)

The rotating frame of reference is introduced by taking the unitary transformation to be the matrix

(5.14). Because both R(t) and the system Hamiltonian (5.10) are diagonal, RHsR
† = Hs. The

time derivative of the transformation can be written

Ṙ(t) =

 1⊕
q=Q

iωr,qA
†
qAq

 1⊗
q=Q

exp
(
iωr,qtA

†
qAq

) , (19)

where ⊕ denotes the Kronecker sum, C ⊕D = C ⊗ ID + IC ⊗D. Therefore,

Ṙ(t)R†(t) =

1⊕
q=Q

iωr,qA
†
qAq =

Q∑
q=1

iωr,qa
†
qaq. (20)

As a result, the first term in the Hamiltonian (5.10) is modified by the term iṘ(t)R†(t). After

noting that RaqR
† = e−iωr,qtaq, the transformed Hamiltonian can be written as

Hrw
s =

Q∑
q=1

(
∆qa

†
qaq −

ξq
2
a†qa
†
qaqaq −

∑
p>q

ξqpa
†
qaqa

†
pap

)
, (21)

H̃c(t) =

Q∑
q=1

fq(t;α)
(
e−iωr,qtaq + eiωr,qta†q

)
, (22)

where ∆q = ωq − ωr,q is the detuning frequency. The above system Hamiltonian corresponds to

(5.15).

To slow down the time scales in the control Hamiltonian, we want to absorb the highly

oscillatory factors exp(±iωr,qt) into fq(t). Because the control function fq(t) is real-valued, this

can only be done in an approximate fashion. We make the ansatz,

fq(t) := 2 Re
(
dq(t)e

iωr,qt
)

= dq(t)e
iωr,qt + d̄q(t)e

−iωr,qt, (23)
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where d̄q denotes the complex conjugate of dq. By substituting this expression into the transformed

control Hamiltonian (22), we get

H̃c(t) =

Q∑
q=1

(
dq(t)aq + d̄q(t)a

†
q + d̄q(t)e

−2iωr,qtaq + dq(t)e
2iωr,qta†q

)
.

The rotating frame approximation follows by ignoring terms that oscillate with frequency, ±2iωr,q,

resulting in the approximate control Hamiltonian (5.16).

.14 Conditions for resonance

Consider the scalar function y(t) := ψ
(1)
j (t). It satisfies an ordinary differential equation of

the form

dy(t)

dt
+ κjy(t) =

∑
`

c`e
iν`t, νk ∈ R. (24)

We are interested in cases when y(t) grows in time, corresponding to resonance. Conditions for

resonance are provided in the following lemma.

Lemma .14.1. Let κ ∈ R and ν ∈ R be constants. The solution of the scalar ordinary differential

equation

dy(t)

dt
+ iκy(t) = ceiνt, y(0) = y0, (25)

is given by

y(t) =


y0e
−iκt + cte−iκt, ν + κ = 0,

y0e
−iκt − ic

ν + κ

(
eiνt − e−iκt

)
, otherwise.

(26)

Corresponding to resonance, the function y(t) grows linearly in time when ν + κ = 0 and c 6= 0.

Proof. Follows by direct evaluation.

We proceed by analyzing the right hand side of (5.20). It can be shown that the forcing

function f (k)(t) is of the form The forcing function f (k)(t) contains the terms

{akψ(0)}j =


gj+ek

√
jk + 1 e−(iκj+ek

t), jk ∈ [0, n1 − 2],

0, jk = nk − 1,

(27)
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and

{a†kψ
(0)}j =


0, jk = 0,

gj−ek
√
jk e
−(iκj−ek

t), jk ∈ [1, nk − 1].

(28)

Therefore,

f
(k)
j (t) =



−igj+ek
√
jk + 1 ei(Ωk−κj+ek

)t, jk = 0,

Θk(t), jk ∈ [1, nk − 2],

−igj−ek
√
jk e
−i(Ωk+κj−ek

)t, jk = nk − 1,

(29)

where Θk(t) = −igj+ek
√
jk + 1 ei(Ωk−κj+ek

)t − igj−ek
√
jk e
−i(Ωk+κj−ek

)t.

The right hand side satisfies f(t) = f (1)(t) + f (2)(t). The first set of frequencies and coeffi-

cients on the right hand side of (24) satisfy

ν1 = Ωk − κj+ek , c1 = −igj+ek
√
jk + 1,

for k = {1, 2} and jk ∈ [0, nk − 2]. The second set of frequencies and coefficients are

ν2 = −(Ωk + κj−ek), c2 = −igj−ek
√
jk.

for k = {1, 2} and jk ∈ [1, nk − 1]. From Lemma .14.1, component ψ
(1)
j (t) is in resonance if

(κj + ν1 = 0, c1 6= 0) or (κj + ν2 = 0, c2 6= 0). These conditions are equivalent to (5.22) and (5.23),

which

.15 Derivation of the discrete adjoint scheme

We seek to determine a scheme for evolving the Lagrange multiplier (adjoint) variables to

satisfy the first order optimality conditions (5.57). In the following, let δr,s denote the usual

Kronecker delta function.

The terms T 3
j to T 6

j in (5.53) enforce the relations between the stage variables (5.45)-(5.48)
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according to

T 3
j =

M−1∑
n=0

〈
Un,1
j − unj ,M

n,1
j

〉
2
, (30)

T 4
j =

M−1∑
n=0

〈
Un,2
j − unj −

h

2

(
SnU

n,1
j + Sn+1U

n,2
j −KnV

n,1
j −Kn+1V

n,2
j

)
,Mn,2

j

〉
2

, (31)

T 5
j =

M−1∑
n=0

〈
V n,1
j − vnj −

h

2

(
Kn+1/2U

n,1
j + Sn+1/2V

n,1
j

)
,Nn,1

j

〉
2

, (32)

T 6
j =

M−1∑
n=0

〈
V n,2
j − vnj −

h

2

(
Kn+1/2U

n,1
j + Sn+1/2V

n,1
j

)
,Nn,2

j

〉
2

. (33)

Taking the derivative of (5.53) with respect to urj

0 =
∂Lh

∂urj
=
∂J h

∂urj
−
[
(µnj − µn+1

j )δr,n + µMj δr,M − (Mn,1
j +Mn,2

j )δr,n

]
,

which gives the conditions

µMj =
∂J h

∂uMj
, µnj − µn+1

j = Mn,1
j +Mn,2

j , n = 0, 1, . . . ,M − 1.

Similarly, differentiating (5.53) with respect to vrj gives

0 =
∂Lh

∂vrj
=
∂J h

∂vrj
−
[
(νnj − νn+1

j )δr,n + νMj δr,M − (Nn,1
j +Nn,2

j )δr,n

]
,

which leads to the conditions

νnj − νn+1
j = Nn,1

j +Nn,2
j , νMj =

∂J h

∂vMj
.
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Next we take the derivative of (5.53) with respect to Un,1
j ,

∂Lh

∂Un,1
j

=
∂J h

∂Un,1
j

−
6∑
i=1

∂T ij

∂Un,1
j

= 0,

∂T 1
j

∂Un,1
j

= −h
2
STnµ

n+1
j ,

∂T 2
j

∂Un,1
j

= −h
2
KT
n+1/2ν

n+1
j ,

∂T 3
j

∂Un,1
j

= Mn,1
j ,

∂T 4
j

∂Un,1
j

= −h
2
STnM

n,2
j ,

∂T 5
j

∂Un,1
j

= −h
2
KT
n+1/2N

n,1
j ,

∂T 6
j

∂Un,1
j

= −h
2
KT
n+1/2N

n,2
j ,

which, using the fact that STn = −Sn and KT
n = Kn, we may write as

Mn,1
j +

h

2
Sn

(
µn+1
j +Mn,2

j

)
− h

2
Kn+1/2

(
νn+1
j +Nn,1

j +Nn,2
j

)
=

∂J h

∂Un,1
j

.

Repeating this procedure for the derivative with respect to Un,2
j gives

∂Lh

∂Un,2
j

=
∂J h

∂Un,2
j

−
6∑
i=1

∂T ij

∂Un,2
j

= 0,

∂T 1
j

∂Un,2
j

= −h
2
STn+1µ

n+1
j ,

∂T 2
j

∂Un,2
j

= −h
2
KT
n+1/2ν

n+1
j ,

∂T 4
j

∂Un,2
j

= Mn,2
j − h

2
STn+1M

n,2
j ,

∂T 3
j

∂Un,2
j

=
∂T 5

j

∂Un,2
j

=
∂T 6

j

∂Un,2
j

= 0,

which we may write compactly as

Mn,2
j +

h

2
Sn+1

(
µn+1
j +Mn,2

j

)
− h

2
Kn+1/2ν

n+1
j =

∂J h

∂Un,2
j

.
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Taking the derivative of (5.53) with respect to V n,1
j gives the set of equations

∂Lh

∂V n,1
j

=
∂J h

∂V n,1
j

−
6∑
i=1

∂T ij

∂V n,1
j

= 0,

∂T 1
j

∂V n,1
j

=
h

2
KT
nµ

n+1
j ,

∂T 2
j

∂V n,1
j

= −h
2
STn+1/2ν

n+1
j ,

∂T 3
j

∂V n,1
j

= 0,

∂T 4
j

∂V n,1
j

=
h

2
KT
nM

n,2
j ,

∂T 5
j

∂V n,1
j

= Nn,1
j − h

2
STn+1/2N

n,1
j ,

∂T 6
j

∂V n,1
j

= −h
2
STn+1/2N

n,2
j ,

which gives the condition

Nn,1
j +

h

2
Sn+1/2

(
νn+1
j +Nn,1

j +Nn,2
j

)
+
h

2
Kn

(
µn+1
j +Mn,2

j

)
=

∂J h

∂V n,1
j

.

Similarly, taking the derivative with respect to V n,2
j gives

∂Lh

∂V n,2
j

=
∂J h

∂V n,2
j

−
6∑
i=1

∂T ij

∂V n,2
j

= 0,

∂T 1
j

∂V n,2
j

=
h

2
KT
n+1µ

n+1
j ,

∂T 2
j

∂V n,2
j

= −h
2
STn+1/2ν

n+1
j ,

∂T 4
j

∂V n,2
j

=
h

2
KT
n+1M

n,2
j ,

∂T 6
j

∂V n,2
j

= Nn,2
j ,

∂T 3
j

∂V n,2
j

=
∂T 5

j

∂V n,2
j

= 0,

giving

Nn,2
j +

h

2
Sn+1/2ν

n+1
j +

h

2
Kn+1

(
µn+1
j +Mn,2

j

)
=

∂J h

∂V n,2
j

.
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In summary, the first order optimality conditions (5.57) are satisfied if the following equations hold:

µnj − µn+1
j = Mn,1

j +Mn,2
j , µMj =

∂J h

∂uMj
, (34)

νnj − νn+1
j = Nn,1

j +Nn,2
j , νMj =

∂J h

∂vMj
, (35)

Mn,1
j +

h

2
Sn

(
µn+1
j +Mn,2

j

)
− h

2
Kn+1/2

(
νn+1
j +Nn,1

j +Nn,2
j

)
=

∂J h

∂Un,1
j

, (36)

Mn,2
j +

h

2
Sn+1

(
µn+1
j +Mn,2

j

)
− h

2
Kn+1/2ν

n+1
j =

∂J h

∂Un,2
j

, (37)

Nn,1
j +

h

2
Sn+1/2

(
νn+1
j +Nn,1

j +Nn,2
j

)
+
h

2
Kn

(
µn+1
j +Mn,2

j

)
=

∂J h

∂V n,1
j

, (38)

Nn,2
j +

h

2
Sn+1/2ν

n+1
j +

h

2
Kn+1

(
µn+1
j +Mn,2

j

)
=

∂J h

∂V n,2
j

. (39)

We now consider the following change of variables

Xn
j = µn+1

j +Mn,2
j , (40)

Y n,1
j = νn+1

j +Nn,1
j +Nn,2

j , (41)

Y n,2
j = νn+1

j , (42)

which, upon substitution into (36)-(39), gives the set of equations

Mn,1
j +

h

2
SnX

n
j −

h

2
Kn+1/2Y

n,1
j =

∂J h

∂Un,1
j

, (43)

Mn,2
j +

h

2
Sn+1X

n
j −

h

2
Kn+1/2Y

n,2
j =

∂J h

∂Un,2
j

, (44)

Nn,1
j +

h

2
Sn+1/2Y

n,1
j +

h

2
KnX

n
j =

∂J h

∂V n,1
j

, (45)

Nn,2
j +

h

2
Sn+1/2Y

n,2
j +

h

2
Kn+1X

n
j =

∂J h

∂V n,2
j

. (46)

By adding (43)-(44),

Mn,1
j +Mn,2

j = −h
2

[
(Sn + Sn+1)Xn

j −Kn+1/2

(
Y n,1
j + Y n,2

j

)]
+

∂J h

∂Un,1
j

+
∂J h

∂Un,2
j

. (47)

Similarly, by adding (45)-(46),

Nn,1
j +Nn,2

j = −h
2

[
Sn+1/2

(
Y n,1
j + Y n,2

j

)
+ (Kn +Kn+1)Xn

j

]
+

∂J h

∂V n,1
j

+
∂J h

∂V n,2
j

. (48)
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Thus, (34)-(35) can be rewritten as

µnj − µn+1
j = −h

2

[
(Sn + Sn+1)Xn

j −Kn+1/2

(
Y n,1
j + Y n,2

j

)]
+

∂J h

∂Un,1
j

+
∂J h

∂Un,2
j

(49)

νnj − νn+1
j = −h

2

[
Sn+1/2

(
Y n,1
j + Y n,2

j

)
+ (Kn +Kn+1)Xn

j

]
+

∂J h

∂V n,1
j

+
∂J h

∂V n,2
j

(50)

By combining Xn
j = µn+1

j +Mn,2
j and (44),

Xn
j = µn+1

j − h

2
Sn+1X

n
j +

h

2
Kn+1/2Y

n,2
j +

∂J h

∂Un,2
j

. (51)

Similarly, by combining Y n,1
j = νn+1

j +Nn,1
j +Nn,2

j and (48),

Y n,1
j = νn+1

j − h

2

[
Sn+1/2

(
Y n,1
j + Y n,2

j

)
+ (Kn +Kn+1)Xn

j

]
+

∂J h

∂V n,1
j

+
∂J h

∂V n,2
j

. (52)

The time-stepping scheme is completed by the relation

Y n,2 = νn+1
j . (53)

The scheme (49)-(53) may be written in the form of Lemma 5.4.1 by defining the slopes

according to (5.61)-(5.64). This completes the proof of the lemma.

.16 Proof of Corollary 1

By rearranging (5.59) and (5.60),

µn+1
j = µnj +

h

2

(
κn,1j + κn,2j

)
, (54)

νn+1
j = νnj +

h

2

(
`n,1j + `n,2j

)
. (55)

Hence, bµ1 = bµ2 = 1/2 and bν1 = bν2 = 1/2.

To express the stage variables in standard form we substitute (54) into (5.65) and define

Xn,1
j = Xn,2

j = Xn
j . Similarly, we substitute (55) into (5.66) and (5.67), resulting in

Xn,1
j = µnj +

h

2
κn,1j ,

Xn,2
j = µnj +

h

2
κn,1j ,

Y n,1
j = νnj ,

Y n,2
j = νnj +

h

2

(
`n,1j + `n,2j

)
.
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From these relations we can identify aµ11 = aµ21 = 1/2 and aµ12 = aµ22 = 0. Furthermore, aν11 = aν12 = 0

and aν21 = aν22 = 1/2.

For the case without forcing, the formulae for the slopes, (5.65)-(5.67), become

κn,1j = SnX
n,1
j −Kn+1/2Y

n,1
j , (56)

κn,2j = Sn+1X
n,2
j −Kn+1/2Y

n,2
j , (57)

`n,1j = KnX
n,1
j + Sn+1/2Y

n,1
j , (58)

`n,2j = Kn+1X
n,2
j + Sn+1/2Y

n,2
j . (59)

They are consistent approximations of the time derivatives µ̇(tn) and ν̇(tn), respectively. The

scheme is therefore a consistent approximation of the continuous adjoint system.

.17 Computing the gradient of the discrete objective function

Given a solution that satisfies the saddle point conditions of (5.56) and (5.57), the gradient

of Lh(α) satisfies

dLh
dαr

=
∂J1h

∂αr
(u,v) +

∂J2h

∂αr
(U ,V ), r = 1, 2, . . . , D.

The gradient of Lh with respect to α only gets a contribution from the terms in T qj that involve

the matrices K and S. Let S′n = ∂S/∂αr(tn) and K ′n = ∂K/∂αr(tn). We have,

∂T 1
j

∂αr
= −h

2

M−1∑
n=0

〈
S′nU

n,1
j −K ′nV

n,1
j + S′n+1U

n,2
j −K ′n+1V

n,2
j ,µn+1

j

〉
2
,

∂T 2
j

∂αr
= −h

2

M−1∑
n=0

〈
K ′n+1/2

(
Un,1
j +Un,2

j

)
+ S′n+1/2

(
V n,1
j + V n,2

j

)
,νn+1

j

〉
2
,

∂T 3
j

∂αr
= 0,

∂T 4
j

∂αr
= −h

2

M−1∑
n=0

〈
S′nU

n,1
j −K ′nV

n,1
j + S′n+1U

n,2
j −K ′n+1V

n,2
j ,Mn,2

j

〉
2
,

∂T 5
j

∂αr
= −h

2

M−1∑
n=0

〈
K ′n+1/2U

n,1
j + S′n+1/2V

n,1
j ,Nn,1

j

〉
2
,

∂T 6
j

∂αr
= −h

2

M−1∑
n=0

〈
K ′n+1/2U

n,1
j + S′n+1/2V

n,1
j ,Nn,2

j

〉
2
.
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We note that

∂(T 5
j + T 6

j )

∂αr
= −h

2

M−1∑
n=0

〈
K ′n+1/2U

n,1
j + S′n+1/2V

n,1
j ,Nn,1

j +Nn,2
j

〉
2
.

Let Xn
j and Y n,i

j be defined by (40)-(42). We have,

∂T 4
j

∂αr
= −h

2

M−1∑
n=0

〈
S′nU

n,1
j −K ′nV

n,1
j + S′n+1U

n,2
j −K ′n+1V

n,2
j ,Xn

j − µn+1
j

〉
2
,

∂(T 5
j + T 6

j )

∂αr
= −h

2

M−1∑
n=0

〈
K ′n+1/2U

n,1
j + S′n+1/2V

n,1
j ,Y n,1

j − νn+1
j

〉
2
.

Thus,

∂(T 1
j + T 4

j )

∂αr
= −h

2

M−1∑
n=0

〈
S′nU

n,1
j −K ′nV

n,1
j + S′n+1U

n,2
j −K ′n+1V

n,2
j ,Xn

j

〉
2
.

Furthermore, from the relation (42),

∂(T 2
j + T 5

j + T 6
j )

∂αr
=− h

2

M−1∑
n=0

〈
K ′n+1/2U

n,1
j + S′n+1/2V

n,1
j ,Y n,1

j

〉
2

− h

2

M−1∑
n=0

〈
K ′n+1/2U

n,2
j + S′n+1/2V

n,2
j ,Y n,2

j

〉
2
,

We can further simplify the expressions by recognizing that V n,1 = V n,2. By collecting the terms,

∂Lh
∂αr

=
h

2

E−1∑
j=0

M−1∑
n=0

(〈
S′nU

n,1
j + S′n+1U

n,2
j − (K ′n +K ′n+1)V n,1

j ,Xn
j

〉
2

+
〈
K ′n+1/2U

n,1
j + S′n+1/2V

n,1
j ,Y n,1

j

〉
2

+
〈
K ′n+1/2U

n,2
j + S′n+1/2V

n,1
j ,Y n,2

j

〉
2

)
.

This completes the proof of the lemma.


